276 resultados para Crops yield
em Scielo Saúde Pública - SP
Resumo:
The use of cover crops in no-tillage systems can provide better conditions for the development of soybean plants with positive effects on grain yield and growth analysis techniques allow researchers to characterize and understand the behavior of soybean plants under different straw covers. Thus, the aim of this study was to characterize, using growth analysis, yield components and agronomic performance of soybean under common bean, Brachiaria brizantha and pearl millet straws. The experiment was performed on a soil under cerrado in the municipality of Santo Antônio de Goiás, GO. The experiment was arranged in a randomized complete block design with three treatments (cover crops) and five replications. Soybean grain yield was lower in the B. brizantha straw treatment (3,708 kg ha-1) than both in the pearl millet (4.772 kg ha-1) and common bean straw treatments (5,200 kg ha-1). The soybean growth analysis in B. brizantha, pearl millet and common bean allowed characterizing the variation in the production of dry matter of leaves, stems, pods and total and leaf area index that provided different grain yields. The cover crop directly affects the soybean grain yield.
Resumo:
ABSTRACT The objective of this work was to evaluate the dynamics of decomposition process of chopped secondary forest system, previously enriched with legumes Inga velutina Willd. and Stryphnodendron pulcherrimum (Willd.) Hochr. and the contribution of this process to the nutrient input to the cultivation of corn and bean under no-tillage. The experimental design was a randomized block, split plot with four replications. The plots were two species (I. velutina and S. pulcherrimum) and the subplots were seven times of evaluation (0, 7, 28, 63, 189, 252, 294 days after experiment installation). There was no difference (p ≥ 0.05) between the secondary forest systems enriched and no interaction with times for biomass waste, decomposition constant and half-life time. The waste of S. pulcherrimum trees had higher (p < 0.05) C/N ratio than that I. velutina. However, this one was higher (p < 0.05) in lignin content. Nevertheless, the dynamics of residue decomposition was similar. The corn yield was higher (p < 0.05) in cultivation under I.velutina waste. Meanwhile, the beans planted after corn, shows similar (p > 0.05) yield in both areas, regardless of the waste origin.
Resumo:
The use of cover crops in vineyards is a conservation practice with the purpose of reducing soil erosion and improving the soil physical quality. The objective of this study was to evaluate cover crop species and management systems on soil physical properties and grape yield. The experiment was carried out in Bento Gonçalves, RS, Southern Brazil, on a Haplic Cambisol, in a vineyard established in 1989, using White and Rose Niagara grape (Vitis labrusca L.) in a horizontal, overhead trellis system. The treatments were established in 2002, consisting of three cover crops: spontaneous species (SS), black oat (Avena strigosa Schreb) (BO), and a mixture of white clover (Trifolium repens L.), red clover (Trifolium pratense L.) and annual rye-grass (Lolium multiflorum L.) (MC). Two management systems were applied: desiccation with herbicide (D) and mechanical mowing (M). Soil under a native forest (NF) area was collected as a reference. The experimental design consisted of completely randomized blocks, with three replications. The soil physical properties in the vine rows were not influenced by cover crops and were similar to the native forest, with good quality of the soil structure. In the inter-rows, however, there was a reduction in biopores, macroporosity, total porosity and an increase in soil density, related to the compaction of the surface soil layer. The M system increased soil aggregate stability compared to the D system. The treatments affected grapevine yield only in years with excess or irregular rainfall.
Resumo:
Pig slurry (PS) represents an important nutrient source for plants and using it as fertilizer makes greater nutrient cycling in the environment possible. The aim of this study was to assess how PS application over a period of years can affect grain yield, dry matter production and nutrient accumulation in commercial grain and cover crops. The experiment was carried out in an experimental area of the Universidade Federal de Santa Maria, in Santa Maria, RS, Brazil, from May 2000 to January 2008. In this period, 19 grain and cover crops were grown with PS application before sowing, at rates of 0, 20, 40 and 80 m³ ha-1. The highest PS rate led to an increase in nutrient availability over the years, notably of P, but also of nutrients that are potentially toxic to plants, especially Cu and Zn. The apparent recovery of nutrients by commercial grain and cover crops decreased with the increasing number of PS applications to the soil. Accumulated dry matter production of the crops and maize grain yield were highest at an annual application rate of 80 m³ ha-1 PS. However, common bean yield increased up to 20 m³ ha-1 PS, showing that the crop to be grown should be considered to define the application rate.
Influence of micronutrients on dry matter yield and interaction with other nutrients in annual crops
Resumo:
The objective of this work was to determine the influence of Zn, Mn and Cu on shoot dry matter yield and uptake of macro and micronutrients in upland rice, common bean and corn. Six greenhouse experiments were conducted using a Dark Red Latosol (Typic Haplusthox). Treatments consisted of application of Zn at 0, 5, 10, 20, 40, 80 and 120 mg kg-1, of Mn at 0, 10, 20, 40, 80, 160, 320 and 640 mg kg-1 and of Cu application at 0, 2, 4, 8, 32, 64 and 96 mg kg-1. Zinc increased yield of rice, Mn increased yields of corn and bean and Cu improved yields of rice and bean. Uptake of N, Ca, and Cu in rice was decreased by zinc treatment. In common bean, uptake of N, Mg, and Cu was increased by zinc application, whereas, uptake of P was decreased. Manganese increased uptake of Mg, Zn and Fe and decreased uptake of Ca, in corn. Uptake of K, Zn and Mn was increased and uptake of P and Cu was decreased by Mn application, in bean. Copper had positive and negative interactions in the uptake of macro and micronutrients, depending on crop species and nutrients involved.
Resumo:
The objective of this work was to evaluate the effect of cover crops and timing of pre-emergence herbicide applications on soybean yield under no-tillage system. The experiment consisted of four cover crops (Panicum maximum, Urochloa ruziziensis, U. brizantha, and pearl millet) and fallow, in addition to four herbicide timings (30, 20, 10, and 0 days before soybean sowing), under no-tillage system (NTS), and of two control treatments under conventional tillage system (CTS). The experimental design was a completely randomized block, in a split-plot arrangement, with three replicates. Soybean under fallow, P. maximum, U. ruziziensis, U. brizantha, and pearl millet in the NTS and soybean under U. brizantha in the CTS did not differ significantly regarding yield. Soybean under fallow in the CTS significantly reduced yield when compared to the other treatments. The amount of straw on soil surface did not significantly affect soybean yield. Chemical management of P. maximum and U. brizantha near the soybean sowing date causes significant damage in soybean yield. However, herbicide timing in fallow, U. ruziziensis, and pearl millet does not affect soybean yield.
Resumo:
The objective of this work was to evaluate the effect of cover crops and their desiccation times on upland rice yield and on the levels of nitrate and ammonium in a no-tillage soil. The experiment was carried out in a randomized blocks, with split plots and three replicates. Cover crops (plots) were sowed in the off-season (March 2009). In November 2009, at 30, 20, 10 and 0 days before rice sowing (split plots), herbicide was applied on the cover crops (fallow, Panicum maximum, Urochloa ruziziensis, U. brizantha and millet). Straw and soil were sampled (0 - 10 cm) at the sowing day, and after 7, 14, 21, 28 and 35 days. Straws from millet and fallow were degraded more rapidly and provided the lowest level of nitrate in the soil. Urochloa ruziziensis, U. brizantha and P. maximum produced higher amounts of dry matter, and provided the highest levels of nitrate in the soil. Millet provides the lowest nitrate/ammonium ratio and the highest upland rice yield. Desiccations carried out at 30 and 20 days before sowing had the largest levels of nitrate in the soil at the sowing date. Nitrogen content and forms in the soil are affected by cover crops and their desiccation times.
Resumo:
The appropriate chemical management of cover crops in no-tillage aims to obtain greater benefits with its employment in agricultural systems. The objective of this study was to assess upland rice yield as affected by the previous summer crop, species and desiccation timing of cover crops by glyphosate. Sown cover crops were sown (November 2007), followed by rice in half of the experimental area and soybean in the other half (November 2008). After the harvesting of these crops, the same cover crops were sown again (March 2009) and followed by upland rice in the total area (November 2009). The experiment consisted of the combination of five cover crops (fallow, Panicum maximum, Brachiaria ruziziensis, B. brizantha and Pennisetum glaucum), four desiccation timings (30, 20, 10 and 0 days before rice sowing), and two antecedents of the summer crop (rice or soybean) under no-tillage system (NTS), plus two control treatments at conventional tillage system (CTS). Cover crops significantly affect rice grain yield and its components. There is a significant tendency to highest yield when cover crop desiccation is conducted farther from the rice sowing date (from 2,577.1 kg ha-1 - desiccation at rice sowing to 3,115.30 kg ha-1 - desiccation 30 days before rice sowing). Soybean as an antecedent of summer crop allows better upland rice yield (3,754 kg ha-1) than rice as an antecedent of summer crop (2,635 kg ha-1); fallow/soybean/fallow (4,507 kg ha-1) and millet/soybean/millet (4,765 kg ha-1) rotation at no-tillage system, and incorporated fallow /soybean/ incorporated fallow (4,427 kg ha-1) at conventional tillage system allow the highest rice yield; upland rice yield is similar at no-till (3,194 kg ha-1) and till system (2,878 kg ha-1).
Resumo:
The use of cover crops is important for the agricultural crop and soil management in order to improve the system and, consequently, to increase yield. Therefore, the present study analyzed the effect of crop residues of black oat (Avena strigosa Schreb.) (BO) and a cocktail (CO) of BO, forage turnip (Raphanus sativus L.) (FT) and common vetch (Vicia sativa L.) (V) on the emergence speed index (ESI), seedling emergence speed (SES) plant height and soybean yield in different intervals between cover crop desiccation with glyphosate 480 (3 L ha-1) and BRS 232 cultivar sowing. Plots of 5 x 2.5 m with 1 m of border received four treatments with BO cover crops and four with CO as well as a control for each cover crop, at random, with five replications. The plots were desiccated in intervals of 1, 10, 20 and 30 days before soybean seeding. The harvest was manual while yield was adjusted to 13% of moisture content. The experimental design was completely randomized with splitplots and means compared by the Scott and Knott test at 5% of significance. The results showed that CO of cover crops can be recommended for soybean to obtain a more vigorous seedling emergence, from 10 days after cover crop desiccation.
Resumo:
Shoot biomass is considered a relevant component for crop yield, but relationships between biological productivity and grain yield in legume crops are usually difficult to establish. Two field experiments were carried out to investigate the relationships between grain yield, biomass production and N and P accumulation at reproductive stages of common bean (Phaseolus vulgaris) cultivars. Nine and 18 cultivars were grown on 16 m² plots in 1998 and 1999, respectively, with four replications. Crop biomass was sampled at four growth stages (flowering R6, pod setting R7, beginning of pod filling R8, and mid-pod filling R8.5), grain yield was measured at maturity, and N and P concentrations were determined in plant tissues. In both years, bean cultivars differed in grain yield, in root mass at R6 and R7 stages, and in shoot mass at R6 and R8.5, whereas at R7 and R8 differences in shoot mass were significant in 1998 only. In both years, grain yield did not correlate with shoot mass at R6 and R7 and with root mass at R6. Grain yield correlated with shoot mass at R8 in 1999 but not in 1998, with shoot mass at R8.5 and with root mass at R7 in both years. Path coefficient analysis indicated that shoot mass at R8.5 had a direct effect on grain yield in both years, that root mass at R7 had a direct effect on grain yield in 1998, and that in 1999 the amounts of N and P in shoots at R8.5 had indirect effects on grain yield via shoot mass at R8.5. A combined analysis of both experiments revealed that biomass accumulation, N and P in shoots at R6 and R7 as well as root mass at R6 were similar in both years. In 1998 however bean accumulated more root mass at R7 and more biomass and N and P in shoots at R8 and R8.5, resulting in a 57 % higher grain yield in 1998. This indicates that grain yield of different common bean cultivars is not intrinsically associated with vegetative vigor at flowering and that mechanisms during pod filling can strongly influence the final crop yield. The establishment of a profuse root system during pod setting, associated with the continuous N and P acquisition during early pod filling, seems to be relevant for higher grain yields of common bean.
Resumo:
Decomposing crop residues in no-tillage system can alter soil chemical properties, which may consequently influence the productivity of succession crops. The objective of this study was to evaluate soil chemical properties and soybean, maize and rice yield, grown in the summer, after winter crops in a no-tillage system. The experiment was carried out in Jaboticabal, SP, Brazil (21 ° 15 ' 22 '' S; 48 ° 18 ' 58 '' W) on a Red Latosol (Oxisol), in a completely randomized block design, in strip plots with three replications. The treatments consisted of four summer crop sequences (maize monocrop, soybean monocrop, soybean/maize rotation and rice/bean/cotton rotation) combined with seven winter crops (maize, sunflower, oilseed radish, pearl millet, pigeon pea, grain sorghum and sunn hemp). The experiment began in September 2002. After the winter crops in the 2005/2006 growing season and before the sowing of summer crops in the 2006/2007 season, soil samples were collected in the layers 0-2.5; 2.5-5.0; 5-10; 10-20; and 20-30 cm. Organic matter, pH, P, K+, Ca2+, Mg2+, and H + Al were determined in each soil sample. In the summer soybean/maize rotation and in maize the organic matter contents and P levels were lower, in the layers 0-10 cm and 0-20 cm, respectively. Summer rice/bean/cotton rotation increased soil K levels at 0-10 cm depth when sunn hemp and oilseed radish had previously been grown in the winter, and in the 0-2.5 cm layer for millet. Sunn hemp, millet, oilseed radish and sorghum grown in the winter increased organic matter contents in the soil down to 30 cm. Higher P levels were found at the depths 0-2.5 cm and 0-5 cm, respectively, when sunn hemp and oilseed radish were grown in the winter. Highest grain yields for soybean in monoculture were obtained in succession to winter oilseed radish and sunn hemp and in rotation with maize, after oilseed radish, sunn hemp and millet. Maize yields were highest in succession to winter oilseed radish, millet and pigeon pea. Rice yields were lowest when grown after sorghum.
Resumo:
Soil properties are closely related with crop production and spite of the measures implemented, spatial variation has been repeatedly observed and described. Identifying and describing spatial variations of soil properties and their effects on crop yield can be a powerful decision-making tool in specific land management systems. The objective of this research was to characterize the spatial and temporal variations in crop yield and chemical and physical properties of a Rhodic Hapludox soil under no-tillage. The studied area of 3.42 ha had been cultivated since 1985 under no-tillage crop rotation in summer and winter. Yield and soil property were sampled in a regular 10 x 10 m grid, with 302 sample points. Yields of several crops were analyzed (soybean, maize, triticale, hyacinth bean and castor bean) as well as soil chemical (pH, Soil Organic Matter (SOM), P, Ca2+, Mg2+, H + Al, B, Fe, Mn, Zn, CEC, sum of bases (SB), and base saturation (V %)) and soil physical properties (saturated hydraulic conductivity, texture, density, total porosity, and mechanical penetration resistance). Data were analyzed using geostatistical analysis procedures and maps based on interpolation by kriging. Great variation in crop yields was observed in the years evaluated. The yield values in the Northern region of the study area were high in some years. Crop yields and some physical and soil chemical properties were spatially correlated.
Resumo:
Zeolites are hydrated crystalline aluminosilicate minerals of natural occurrence, structured in rigid third dimension net that can be used as slow release plant-nutrient source. The main objective of this study was to evaluate the effects of plant growth substrate under zeolite application, enriched with N, P and K, on dry matter yield and on nutrient contents in consecutive crops of lettuce, tomato, rice, and andropogon grass. The experiment was carried out in a greenhouse, with 3 kg pots with an inert substrate, evaluated in a randomized block design with three replications. Treatments consisted of four types of enrichment of concentrated natural zeolite: concentrated zeolite (Z) only, zeolite + KNO3 (ZNK), zeolite + K2HPO4 (ZPK) and zeolite + H3PO4 + apatite (ZP), and a control grown in substrate fertilized with a zeolite-free nutrient solution. Four levels of enriched zeolite were tested: 20, 40, 80, and 160 g/pot. Four successive crops were grown on the same substrate in each pot: lettuce, tomato, rice, and andropogon grass. Results indicated that N, P and K enriched zeolite was an adequate slow-release nutrient source for plants. The total dry matter production of above-ground biomass of four successive crops followed a descending order: ZP > ZPK > ZNK > Z.
Resumo:
The use of sewage sludge in Brazilian agriculture was regulated by the resolution no. 375 Conama, in 2006. However, there is a lack of research to adequate the mineral N and P fertilizer doses to be applied in agricultural fields treated with this residue. In a field experiment, the effects of application rates of sewage sludge and mineral N and P fertilizers on the productivity and technical characteristics of the cane-plant and first ratoon (residual effect) crops were evaluated. Four doses of sewage sludge (0, 3.6, 7.2 and 10.8 t ha-1, dry base), of N (0, 30, 60 and 90 kg ha-1) and of P2O5 (0, 60, 120 and 180 kg ha-1) were combined in a factorial and laid out on randomized block design, a with two replications. To evaluate the residual effect of the sludge, 120 kg ha-1 N and 140 kg ha-1 of K2O were applied in all plots. Sludge application at cane planting, with or without N and/or P fertilizer increased the stalk yield from 84 up to 118 t ha-1, with no alteration in the sugarcane quality, compared with the application of NPK fertilizer alone, resulting in a stalk yield of 91 t ha-1. The study of the response surface for stalk yield on lowfertility soil was the basis for a recommendation of mineral N and P fertilizer doses for sugarcane implantation as related to sewage sludge application rates. It was also concluded that a sludge application of 10.8 t ha-1, which is the sludge dose established based on the N criterion according to the resolution Conama nº 375, could a) reduce the use of mineral N by 100 % and of P2O5 by 30 %, with increments of 22 % in stalk yield, as a direct effect of sludge application to cane plant crop, and b) increase the stalk yield in the second harvest (first ratoon) by up to 12 % and sugar yield by up to 11 %, by the residual effect of sludge application to sugar cane.
Resumo:
Research data have demonstrated that the P demand of coffee (Coffea arabica L.) is similar to that of short-cycle crops. In this context, the objective of this study was to evaluate the influence of annual P fertilization on the soil P status by the quantification of labile, moderately labile, low-labile, and total P fractions, associating them to coffee yield. The experiment was installed in a typical dystrophic Red Latosol (Oxisol) cultivated with irrigated coffee annually fertilized with triple superphosphate at rates of 0, 50, 100, 200, and 400 kg ha-1 P2O5. Phosphorus fractions were determined in two soil layers: 0-10 and 10-20 cm. The P leaf contents and coffee yield in 2008 were also evaluated. The irrigated coffee responded to phosphate fertilization in the production phase with gains of up to 138 % in coffee yield by the application of 400 kg ha-1 P2O5. Coffee leaf P contents increased with P applications and stabilized around 1.98 g kg-1, at rates of 270 kg ha-1 P2O5 and higher. Soil P application caused, in general, an increase in bioavailable P fractions, which constitute the main soil P reservoir.