134 resultados para Conditional stability constant
em Scielo Saúde Pública - SP
Resumo:
Stability constant (log beta) and thermodynamic parameters of Cd2+ complexes with sulfonamide and cephapirin were determined by Polarographic technique at pH = 7.30 ± 0.01 and µ = 1.0 M KNO3 at 250°C. The sulfonamides were sulfadiazine, sulfisoxazole, sulfamethaxazole, sulfamethazine, sulfathiazole, sulfacetamide and sulfanilamide used as primary ligands and cephapirin as secondary ligand. Cd2+ formed 1:1:1, 1:2:1 and 1:1:2 complexes. The nature of electrode processes were reversible and diffusion controlled. The stability constants and thermodynamic parameters (deltaG, deltaH and deltaS) were determined. The formation of the metal complexes has been found to be spontaneous, exothermic in nature, and entropically unfavourable at higher temperature.
Resumo:
Oxyradicals play a tole in several diseases. While for several decades the hydroxyl radical - produced via the Fenton reaction - has been considered the species that initiates oxyradical damage, new findings suggest that much of this damage can be ascribed to peroxynitrite, O=NOO-, formed from the reaction of the superoxide anion with nitrogen monoxide near activated macrophages. The rate constant for the reaction of this reaction has been investigated by flash photolysis and was found to be significantly higher than previously described in the literature, 1.9 x 10(10) M-1s-1. Studies of the isomerization to nitrate resulted in the discovery of a complex between peroxynitrite and its protonated form with a stability constant of 1 x 10(4) M-1. Some of the harmful reaction of peroxynitrous acid have been ascribed to the hydroxyl radical as a product of homolysis of the O-O bond during the conversion to nitrate. Kinetics of the isomerization reaction as a function of pressure show that the activation volume is only +1.5+1.0 ml mol-1, which is inconsistent with homolysis. Instead, an intermediate, possibly a distorted trans-isomer of O=NOOH could be responsible for the harmful reactions of peroxynitrite.
Resumo:
Potentiometric amalgam electrodes of lead, cadmium, and zinc are proposed to study the complexation properties of commercial and river sediment humic acids. The copper complexation properties of both humic acids were studied in parallel using the solid membrane copper ion-selective electrode (Cu-ISE). The complexing capacity and the averaged conditional stability constants were determined at pH 6.00 ± 0.05 in medium of 2x10-2 mol L-1 sodium nitrate, using the Scatchard method. The lead and cadmium amalgam electrodes presented a Nernstian behavior from 1x10-5 to 1x10-3 moles L-1 of total metal concentration, permitting to perform the complexation studies using humic acid concentrations around of 20 to 30 mg L-1, that avoids colloidal aggregation. The zinc amalgam electrode showed a subnernstian linear response in the same range of metal concentrations. The Scatchard graphs for both humic acids suggested two classes of binding sites for lead and copper and one class of binding site for zinc and cadmium.
Resumo:
The present study reports details of the stoichiometric characterization of the mixed complex system, V(H2O2)PAR, formed when vanadium adequately reacts with hydrogen peroxide and with 4-(2-Pyridilazo)Resorcinol. Also the presence of polynuclear species was investigated in order to elucidate about unambiguous assignment of the molar absorptivity, stability constant and composition of the complex. Two mathematical treatments methods of the experimental results were employed. From the results it can be concluded that this system corresponds to a mononuclear complex with 1:1:1 stoichiometry.
Resumo:
The copper and cadmium complexation properties in natural sediment suspensions of reservoirs of the Tietê River were studied using the solid membrane copper and cadmium ion-selective electrodes. The complexation and the average conditional stability constants were determined under equilibrium conditions at pH=6.00 ± 0.05 in a medium of 1.0 mol L-1 sodium nitrate, using the Scatchard method. The copper and cadmium electrodes presented Nernstian behavior from 1x10-6 to 1x10-3 mol L-1 of total metal concentration. Scatchard graphs suggest two classes of binding sites for both metals. A multivariate study was done to correlate the reservoirs and the variables: complexation properties, size, total organic carbon, volatile acid sulfide, E II and pH.
Resumo:
This work describes methodologies for speciation analysis of the metals copper and zinc as total, total dissolved, labile, as well as complexation capacity (conditional stability constants and available ligand concentration), using the same technique, differential pulse anodic stripping voltammetry (DPASV). Several supporting electrolytes were tested, and the results showed that KNO3 and HNO3 resulted in voltamograms without interferences as well as excellent resolution for the total and labile fractions. The methodology using the DPASV technique allows a simple and low cost analysis of copper and zinc speciation, with high precision and sensitivity, with limits of quantification (LOQ) of 1.8 nmol L-1 for copper and 2.1 nmol L-1 for zinc.
Resumo:
Croton zehntneri, a plant native to northeastern Brazil, is widely used in folk medicine to treat gastrointestinal problems and has rich essential oil content. The essential oil of C. Zehntneri was analyzed by GC-MS, and its inclusion complex with β-cyclodextrin (β-CD) was characterized by both vibrational spectroscopy and differential scanning calorimetry (DSC). Estragol was the major component identified in the essential oil by the study. IR spectra indicated an interaction of β-CD with essential oil from C. zehntneri, a finding corroborated by the stability constant and scanning calorimetry. Microencapsulation within β-CD has the potential to mask sensory attributes and increase aqueous solubility of oils, thereby improving their applicability as drugs.
Resumo:
Voltammetric technique was used to study the binary and ternary complexes of cadmium with L-amino acids and vitamin-C (L-ascorbic acid) at pH =7.30 ± 0.01, µ = 1.0M KNO3 at 25ºC and 35ºC. Cd (II) formed 1:1:1, 1:1:2 and 1:2:1 complexes with L-lysine, L-ornithine, L-threonine, L-serine, L-phenylglycine, L-phenylalanine, L-glutamic acid and L-aspartic acid used as primary ligands and L-ascorbic acid used as secondary ligand. The trend of stability constant of complexes was L-lysine < L-ornithine < L-threonine < L-serine < L-phenylglycine < L-phenylalanine < L-glutamic acid < L-aspartic acid which can be explained on the basis of size, basicity and steric hindrance of ligands. The values of stability constant (log β) varied from 2.23 to11.33 confirm that these drugs i.e. L-amino acids or in combination with L-ascorbic acid or their complexes could be used against Cd (II) toxicity. The study has been carried out at 35ºC also to determine the thermodynamic parameters such as enthalpy change (ΔH), Free energy change (ΔG) and entropy change (ΔS) respectively.
Resumo:
Two new, simple, rapid and reproducible spectrophotometric methods have been developed for the determination of lamotrigine (LMT) both in pure form and in its tablets. The first method (method A) is based on the formation of a colored ion-pair complex (1:1 drug/dye) of LMT with bromocresol green (BCG) at pH 5.02±0.01 and extraction of the complex into dichloromethane followed by the measurement of the yellow ion-pair complex at 410 nm. In the second (method B), the drug-dye ion-pair complex was dissolved in ethanolic potassium hydroxide and the resulting base form of the dye was measured at 620 nm. Beer's law was obeyed in the concentration range of 1.5-15 µg mL-1 and 0.5-5.0 µg mL-1 for method A and method B, respectively, and the corresponding molar absorptivity values are 1.6932 x 10(4) and 3.748 x 10(4) L mol-1cm-1. The Sandell sensitivity values are 0.0151 and 0.0068 µg cm-2 for method A and method B, respectively. The stoichiometry of the ion-pair complex formed between the dug and dye (1:1) was determined by Job's continuous variations method and the stability constant of the complex was also calculated. The proposed methods were applied successfully for the determination of drug in commercial tablets.
Resumo:
In this work, through the use of thermal analysis techniques, the thermal stabilities of some antioxidants were investigated, in order to evaluate their resistance to thermal oxidation in oils, by heating canola vegetable oil, and to suggest that antioxidants would be more appropriate to increase the resistance of vegetable oils in the thermal degradation process in frying. The techniques used were: Thermal Gravimetric (TG) and Differential Scanning Calorimetry (DSC) analyses, as well as an allusion to a possible protective action of the vegetable oils, based on the thermal oxidation of canola vegetable oil in the laboratory under constant heating at 180 ºC/8 hours for 10 days. The studied antioxidants were: ascorbic acid, sorbic acid, citric acid, sodium erythorbate, BHT (3,5-di-tert-butyl-4-hydroxytoluene), BHA (2, 3-tert-butyl-4-methoxyphenol), TBHQ (tertiary butyl hydroquinone), PG (propyl gallate) - described as antioxidants by ANVISA and the FDA; and also the phytic acid antioxidant and the SAIB (sucrose acetate isobutyrate) additive, which is used in the food industry, in order to test its behavior as an antioxidant in vegetable oil. The following antioxidants: citric acid, sodium erythorbate, BHA, BHT, TBHQ and sorbic acid decompose at temperatures below 180 ºC, and therefore, have little protective action in vegetable oils undergoing frying processes. The antioxidants below: phytic acid, ascorbic acid and PG, are the most resistant and begin their decomposition processes at temperatures between 180 and 200 ºC. The thermal analytical techniques have also shown that the SAIB antioxidant is the most resistant to oxidative action, and it can be a useful choice in the thermal decomposition prevention of edible oils, improving stability regarding oxidative processes.
Resumo:
Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots) with 0 and 2000 kg ha-1 of gypsum (subplots) and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m) as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.
Resumo:
A controlled trial was performed with the purpose of investigating which factors could be considered of significant risk for the development of basal cell carcinoma. A total of 259 cases of basal cell carcinoma diagnosed from July 1991 to July 1992 were compared with 518 controls matched for age and sex. All subjects in both groups were white. Protocol data were submitted to statistical analysis by the chi-square test and by multiple conditional logistic regression analysis and the following conclusions were reached: 1) light skin color (types I and II of the Fitzpatrick classification), odds ratio of 2.8; outdoor work under constant sunlight, odds ratio of 5.0; the presence of actinic lesions due to exposure to the sun, odds ratio of 4.9, are risk factors perse. 2) Type III skin in the Fitzpatrick classification only represents a risk factor when the patient reports a history of intense sunburns, but not in the absence of such a history. 3) Sunburns per se do not represent a risk factor althorig the point made in item 2 of these conclusions is valid. 4) Other suspected risk factors whose significance was not confirmed by multiple conditioned logistic regression analysis were: residence in rural areas, light eyes and blond hair color, extent of the awareness of the "sun x skin cancer" relationship, familial occurrence of skin cancer, excessive exposure to the sun, and freckles appearing in childhood.
Resumo:
The susceptibility of the MAP Brazilian strain (F1 to F5 progenies) of S. mansoni to four antischistosomal drugs has been reported in a previous study. In the present investigation, progeny F14 of the same strain, was tested for stability to the same 4 drugs. A new medication, Oltipraz (35,972 RP), was added to the study. Five groups of 12 mice infected with cercariae by tail immersion were treated with hycanthone, oxamniquine, niridazole, praziquantel and Oltipraz. An untreated group was used as control. Schistosomal activity was assessed by the localization of worms in the portal vein system, by oogram changes, and percentage of parasite reduction. The stability of the susceptibility of progeny F14 did not change in relation to generations F1 to F5; the progeny was resistant to hycanthone and oxamniquine; but sensitive to niridazole, praziquantel and Oltipraz. We emphasize the importance of the phenomenon of resistance of the worm in view of the fact that oxamniquine has been widely used in Brazilian areas where mansonic schistosomiasis is endemic.
Resumo:
Laboratory tests with aqueous solutions of Euphorbia splendens var. hislopii latex have demonstrated seasonal stability of the molluscicidal principle, with LD90 values of 1.14 ppm (spring), 1.02 ppm (fall), 1.09 ppm (winter), and 1.07 ppm (summer) that have been determined against Biomphalaria tenagophila in the field. Assays on latex collected in Belo Horizonte and Recife yielded LD90 values similar to those obtained with the reference substance collected in Rio de Janeiro (Ilha do Governador), demonstrating geographic stability of the molluscicidal effect. The molluscicidal action of aqueous dilutions of the latex in natura, centrifuged (precipitate) and lyophilized, was stable for up to 124 days at room temperature (in natura) and for up to 736 days in a common refrigerator at 10 to 12ºC (lyophilized product). A 5.0 ppm solution is 100% lethal for snails up to 13 days after preparation, the effect being gradually lost to almost total inactivity by the 30th day. This observation indicated that the active principle is instable. These properties together with the wide distribution of the plant, its resistance and adaptation to the tropical climate, its easy cultivation and the easy obtention of latex and preparation of the molluscicidal solution, make this a promising material for large-scale use in the control of schistosomiasis
Resumo:
Stability of faecal egg excretion and correlation with results related to worm burden at the initial phase of schistosomiasis mansoni were observed in two groups of mice infected with different Schistosoma mansoni cercarial burdens, by means of analysis of quantitative parasitological studies and schistosome counts after perfusion. Thus, it may be stated that few quantitative parasitological stool examinations could be sufficient to express the infection intensity at the initial phase, on the same grounds that it was already demonstrated at the chronic phase. Furthermore, it is confirmed that the use of the number of eggs passed in the faeces as a tool to estimate the worm burden at the initial phase of schistosome infection is adequate.