148 resultados para Concentration technique
em Scielo Saúde Pública - SP
Resumo:
The formalin-Tween sedimentation method was compared with the formalin-ether sedimentation for parasitic detection. Of a total 297 fecal specimens examined, 72.1% were positive. The formalin-tween technique was effective for ascertaining helminths, particularly Ascaris lumbricoides, Trichuris trichiura and hookworm eggs; however it has less capability for protozoa detection. This method is simple, inexpensive, less time consuming and highly sensitive when detecting the parasitic infection, particularly when focusing on helminth eggs.
Resumo:
Cryptosporidium was detected in 21 (3.8%) individual stool samples collected from 553 pediatric patients hospitalized in our center employing a Telemann concentration technique (formalinethercentrifugation) and stained with the modified Kinyoun method. The mean age of populations with Cryptosporidiosis (16 boys and 5 girls) was 11 months; 15 months for girls and 6.5 for boys. Ages of 81% of them were less than 19 months. Seventysix per cent of patients lived on the outskirts of Buenos Aires and 71% lacked pretreated running water at home. In 62% of the cases parasitological diagnoses coincided with warm seasons. At diagnosis mucous (63%) or watery (36%) diarrhea was presented in 90% of the patients with a median of 5 (38) bowel movements per day. Fever was presented in 66% of patients while abdominal pain and vomits in 60% and 52%, respectively. The median time from hospitalization up to parasitologic diagnosis was 20 days. Concomitant diseases observed were malnutrition, acute leukemia, bronchiolitis, HIV infection, anemia, celiac disease, myelofibrosis, vitelline sac tumor, neutropenia, osteosarcoma and dehydration. Cryptosporidiosis in our environment seems to occur more frequently in children younger than 18 months of age; who present diarrhea; are immunodeficient; come from a low socioeconomical background; and who live in poor sanitary conditions with no potable running water.
Resumo:
Sand culture experiments, using a sub-irrigation technique, were installed in order to find out the effects of the macronutrients N, P, K, Ca, Mg and S on growth, aspect, mineral composition, length of fibers, thickness of cell wall and cellulose concentration in slash pine. The aim was to obtain, under controlled conditions, basic information which could eventually lead to practical means designed to increase the rate of growth and to make of slash pine a richer source of cellulose. Nitrogen, Phosphorus, Potassium Experiment A 3 x 3 x 3 factorial design with two replicates was used. Nitrogen was supplied initially at the levels of 25, 50 and 100 ppm; phosphorus was given at the rates of 5, 10 and 20 ppm; potassium was supplied at the rates of 25, 50 and 100 ppm; six months after the experiment was started the first level for each element was dropped to zero. Others macro and all micronutrients were supplied at uniform rates. Fifteen hours of illumination per day were provided. The experimental technique for growing the slash pine seedlings proved quite satisfactory. Symptoms of deficiency of nitrogen, phosphorus and potassium were observed, described and recorded in photographs and water colors. These informations will help to identify abnormalities which may appear under field conditions. Chemical analysis of the several plant parts, on the other hand, give a valuable means to assess the nutritional status of slash pine, thus confirming when needed, the visual diagnosis. The correctness of manurial pratices, on the other hand, can be judged with the help of the analytical data tabulated. Under the experimental conditions nitrogen caused the highest increases on growth, as measured by increments in height and dry weights, whereas the effects of phosphorus and potassium were less marked. Cellulose concentration was not significantly affected by the treatments used. Higher levels of N seemed to decrease both length of fiber elements and the thickness of cell wall. The effects of P and K were not well defined. Calcium, Magnesium, Sulfur Experiment A 3 x 3 x 3 factorial design with two replicates was used. Calcium was supplied initially at the levels of 12.5, 25 and 50 ppm; magnesium and sulfur were given at the rates of 6, 12.5 and 25 ppm. Other macro and micronutrients were supplied at uniform rates, common to all treatments. Three months after starting the experiment the first level for each element was dropped to zero. Symptoms of deficiency of calcium, magnesium and sulfur were observed, described and recorded as in the case of the previous experiment. Chemical analysis were made, both for mineral content and cellulose concentration. Length of fibers and thickness of cell wall were measured. Both calcium and magnesium increase height, sulfur failing to give significant response. Dry weight was beneficially affected by calcium and sulfur. The levels of calcium, magnesium and sulfur in the needles associated with deficiency and maximum growth are comparable with those found in the literature. Cellulose concentration increased when the level of sulfur in the substrate was raised. The thickness of cell wall was negatively affected by the treatments; no effect was observed with regards to length of fibers.
Resumo:
In this work, using the EPR spectroscopy, we analysed the thermal stability of some organic-mineral compounds found in a Gleysoil from Rio Janeiro. It was observed a complete disappearance of the EPR signal around 600 °C for the < 2 µm fraction and a residual EPR signal of semiquinone free radical for the 2-20 µm and 20-53 µm fractions at the same temperature. Also, the experiments showed that the 2-20 µm fraction had a larger concentration of semiquinone free radical per g of carbon and a smaller line width indicated a larger humification of this fraction. This is an evidence that the soil organic matter of this fraction (2-20 µm) is more stable than the other ones.
Resumo:
We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.
Resumo:
In this study, the validation of a method for analyzing the uranium (U) concentration in human urine samples by inductively coupled plasma-sector field mass spectrometry (ICP-SFMS) was conducted. PROCORAD (the Association for the Promotion of Quality Control in Radiotoxicological Analysis) provided two urine samples spiked with unknown contents of U (Sample A = 33.6 ± 1.0 µg/L and Sample B = 3.3 ± 0.1 µg/L) and one unspiked sample as a blank. The analyses were directly performed on the diluted urine samples (dilution factor = 1:20) in 5% v/v HNO3. The results obtained by ICP-SFMS corresponded well with the reference values, and the limits of detection were 235U = 0.049 × 10-3 µg/L and 238U = 7.37 × 10-3 µg/L. The ICP-SFMS technique has been shown to be successful in the analysis of the U concentration in human urine samples and for the quantification of isotopic ratios.
Resumo:
A statistical mixture-design technique was used to study the effects of different solvents and their mixtures on the yield, total polyphenol content, and antioxidant capacity of the crude extracts from the bark of Schinus terebinthifolius Raddi (Anacardiaceae). The experimental results and their response-surface models showed that ternary mixtures with equal portions of all the three solvents (water, ethanol and acetone) were better than the binary mixtures in generating crude extracts with the highest yield (22.04 ± 0.48%), total polyphenol content (29.39 ± 0.39%), and antioxidant capacity (6.38 ± 0.21). An analytical method was developed and validated for the determination of total polyphenols in the extracts. Optimal conditions for the various parameters in this analytical method, namely, the time for the chromophoric reaction to stabilize, wavelength of the absorption maxima to be monitored, the reference standard and the concentration of sodium carbonate were determined to be 5 min, 780 nm, pyrogallol, and 14.06% w v-1, respectively. UV-Vis spectrophotometric monitoring of the reaction under these conditions proved the method to be linear, specific, precise, accurate, reproducible, robust, and easy to perform.
Resumo:
Silica gel chemically modified with 2-Aminotiazole groups, abbreviated as SiAT, was used for preconcentration of copper, zinc, nickel and iron from kerosene, normally used as a engine fuel for airplanes. Surface characteristics and surface area of the silica gel were obtained before and after chemical modification using FT-IR, Kjeldhal and surface area analysis (B.E.T.). The retention and recovery of the analyte elements were studied by applying batch and column techniques. The experimental parameters, such as shaking time in batch technique, flow rate and concentration of the eluent (HCl- 0.25-2.00 mol L-1) and the amount of silica, on retention and elution, have been investigated. Detection limits of the method for copper, iron, nickel and zinc are 0.77, 2.92, 1.73 and 0.097 mg L-1, respectively. The sorption-desorption of the studied metal ions made possible the development of a preconcentration method for metal ions at trace level in kerosene using flame AAS for their quantification.
Resumo:
The objective of this work was to evaluate the feasibility of vegetative propagation through cutting technique of seven tree species with strong occurrence in the riparian forest of the Lower São Francisco River in Sergipe State, under different concentrations of indolbutiric acid at 0, 2500, and 5000 mg.L-1, for potentialization of its use in soil bioengineering technique. It was used a complete random block design with three replicates, and a total of twenty-one treatments. The evaluation period was 120 days for each species, and the data collection was made in intervals of fifteen days, in a total of eight evaluations for each species. The evaluated parameters were: Survival Rate, callus formation, and Root Dry matter Weight. Among the studied species, Schinus terebinthifolius Raddi presented the best results related to cutting technique mainly under the indolbutiric acid concentration of 2500 mg.L-1.
Resumo:
The concern related to environment is growing. Due to this, it is needed to determine chemical elements in a large range of concentration. The neutron activation technique (NAA) determines the elemental composition by the measurement of artificial radioactivity in a sample that was submitted to a neutron flux. NAA is a sensitive and accurate technique with low detection limits. An example of application of NAA was the measurement of concentrations of rare earth elements (REE) in waste samples of phosphogypsum (PG) and cerrado soil samples (clayey and sandy soils). Additionally, a soil reference material of the International Atomic Energy Agency (IAEA) was also analyzed. The REE concentration in PG samples was two times higher than those found in national fertilizers, (total of 4,000 mg kg-1 ), 154 times greater than the values found in the sandy soil (26 mg kg-1 ) and 14 times greater than the in clayey soil (280 mg kg-1 ). The experimental results for the reference material were inside the uncertainty of the certified values pointing out the accuracy of the method (95%). The determination of La, Ce, Pr, Nd, Pm, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and Lu in the samples and reference material confirmed the versatility of the technique on REE determination in soil and phosphogypsum samples that are matrices for agricultural interest.
Resumo:
The study aimed to quantify the concentrations of free IGF-I in serum and fluid of ovarian follicles in pre-pubertal gilts and describe the ovarian morphology by measuring the size of the ovaries and counting the number of surface follicles. Ovaries (n=1,000) from pre-pubertal gilts were obtained immediately after slaughter. A total of 10 samplings were performed, with ovaries obtained from 50 females for each collection. The follicles situated on the surface of each ovary were classified as small (SFs, 2 to 5mm in diameter) or large (LFs 6 to 10mm in diameter) and the follicular fluid was obtained by follicle aspiration. The collection of serum samples was performed after the gilts exsanguination using sterile tubes. From the pool of serum and follicular fluid obtained from 50 females, the concentration of free IGF-I was determined in each sample using an enzyme immunoassay kit (ELISA). The description of ovarian morphometry was performed in 100 ovaries from randomly selected gilts. The larger and smaller lengths of ovaries were measured, and the total number of SFs and LFs present on the surface of each ovary were also counted. The IGF-I concentration was greater (P<0.05) in LFs (170.92±88.29 ng/mL) compared with SFs (67.39±49.90ng/mL) and serum (73.48±34.63ng/mL). The largest and smallest length of the ovaries was 26.0±3.0 and 19.0mm ±2.0mm, respectively. The number of SFs (70.86±25.76) was greater (P<0.01) than LFs (6.54±5.26). The study concluded that LFs present greater levels of IGF-I when compared with SFs and blood, which is related to increased activity of the LFs and its differentiation to ovulation. In addition, ovaries of pre-pubertal gilts have a higher number of SFs compared to LFs. Therefore, our study demonstrated unique data regarding the physiological concentration of free IGF-I in ovarian follicles, that can be used in future research to evaluate the addition of this hormone in the in vitro production media of porcine embryos with the goal to improve the technique efficiency.
Resumo:
The objective of this study was to optimize and validate the solid-liquid extraction (ESL) technique for determination of picloram residues in soil samples. At the optimization stage, the optimal conditions for extraction of soil samples were determined using univariate analysis. Ratio soil/solution extraction, type and time of agitation, ionic strength and pH of extraction solution were evaluated. Based on the optimized parameters, the following method of extraction and analysis of picloram was developed: weigh 2.00 g of soil dried and sieved through a sieve mesh of 2.0 mm pore, add 20.0 mL of KCl concentration of 0.5 mol L-1, shake the bottle in the vortex for 10 seconds to form suspension and adjust to pH 7.00, with alkaline KOH 0.1 mol L-1. Homogenate the system in a shaker system for 60 minutes and then let it stand for 10 minutes. The bottles are centrifuged for 10 minutes at 3,500 rpm. After the settlement of the soil particles and cleaning of the supernatant extract, an aliquot is withdrawn and analyzed by high performance liquid chromatography. The optimized method was validated by determining the selectivity, linearity, detection and quantification limits, precision and accuracy. The ESL methodology was efficient for analysis of residues of the pesticides studied, with percentages of recovery above 90%. The limits of detection and quantification were 20.0 and 66.0 mg kg-1 soil for the PVA, and 40.0 and 132.0 mg kg-1 soil for the VLA. The coefficients of variation (CV) were equal to 2.32 and 2.69 for PVA and TH soils, respectively. The methodology resulted in low organic solvent consumption and cleaner extracts, as well as no purification steps for chromatographic analysis were required. The parameters evaluated in the validation process indicated that the ESL methodology is efficient for the extraction of picloram residues in soils, with low limits of detection and quantification.
Resumo:
Asthma and chronic obstructive pulmonary disease (COPD) are common respiratory illnesses characterized by chronic inflammation of the airways. The characterization of induced or spontaneously produced sputum is a useful technique to assess airway inflammation. In the present study, we compared the concentrations of CCL2, CCL11, CXCL8, and tumor necrosis factor-alpha (TNF-alpha) in plasma and induced sputum of patients with severe asthma or COPD and correlated the levels of these mediators with inflammatory cells in sputum. Asthmatic patients had elevated levels of eosinophils (40.1 ± 6.24%) in sputum whereas neutrophils (63.3 ± 4.66%) predominated in COPD patients. The levels of the chemokine CCL11 were markedly increased in sputum (708.7 ± 330.7 pg/ml) and plasma (716.6 ± 162.2 pg/ml) of asthmatic patients and correlated with the percentage of eosinophils in induced sputum. The concentrations of CXCL8 (817.0 ± 105.2 pg/ml) and TNF-alpha (308.8 ± 96.1 pg/ml) were higher in sputum of COPD patients and correlated with the percentage of neutrophils in induced sputum. There was also an increase in the concentrations of CXCL8 (43.2 ± 6.8 pg/ml) in sputum of asthmatic patients. These results validate that sputum is a suitable method to assess chemokines and cytokines associated with asthma and COPD. Moreover, the mechanisms involved in the synthesis of CCL11 and CXCL8/TNF-alpha would be helpful to better understand the inflammatory profile associated with asthma and COPD, respectively.
Hydraulic conductivity in response to exchangeable sodium percentage and solution salt concentration
Resumo:
Hydraulic conductivity is determined in laboratory assays to estimate the flow of water in saturated soils. However, the results of this analysis, when using distilled or deionized water, may not correspond to field conditions in soils with high concentrations of soluble salts. This study therefore set out to determine the hydraulic conductivity in laboratory conditions using solutions of different electrical conductivities in six soils representative of the State of Pernambuco, with the exchangeable sodium percentage adjusted in the range of 5-30%. The results showed an increase in hydraulic conductivity with both decreasing exchangeable sodium percentage and increasing electrical conductivity in the solution. The response to the treatments was more pronounced in soils with higher proportion of more active clays. Determination of hydraulic conductivity in laboratory is routinely performed with deionized or distilled water. However, in salt affected soils, these determinations should be carried out using solutions of electrical conductivity different from 0 dS m-1, with values close to those determined in the saturation extracts.
Resumo:
ABSTRACT At poor conditions of nitrogen (N) in the soil, potato plants may accumulate starch in leaves and be indicative of N nutritional stress. The objective of this work was to determine the effects of N rates (0, 50, 100, 200 and 300 kg ha-1 of N) on the concentrations of carbohydrates (total soluble sugars-TSS, reducing sugars-RS, non-reducing sugars-NRS and starch) in the fourth leaf (FL) of two potato cultivars (Asterix and Atlantic) and their critical levels (CL) associated to the N fertilization rate necessary to obtain the maximum physical (MPE) and economic (MEE) efficiency of tubers. A randomized block design with four replications was used in both experiments. On day 21 after plant emergence, four FL were collected from four plants. Potatoes plants fertilized with low rates of N accumulated less TSS in leaves than those properly fertilized. The opposite occurred with content of starch. The cultivars showed similar responses to five doses of N in relation to contents of starch and TSS. However, the response to the increase in doses of N for RS, NRS and Starch/NRS is cultivar-specific. The correlations between contents of RS, NRS and Starch/NRS with the starch and TSS were dependent on the potato cultivar.