7 resultados para Computer Systems
em Scielo Saúde Pública - SP
Resumo:
The present study aimed at evaluating the use of Artificial Neural Network to correlate the values resulting from chemical analyses of samples of coffee with the values of their sensory analyses. The coffee samples used were from the Coffea arabica L., cultivars Acaiá do Cerrado, Topázio, Acaiá 474-19 and Bourbon, collected in the southern region of the state of Minas Gerais. The chemical analyses were carried out for reducing and non-reducing sugars. The quality of the beverage was evaluated by sensory analysis. The Artificial Neural Network method used values from chemical analyses as input variables and values from sensory analysis as output values. The multiple linear regression of sensory analysis values, according to the values from chemical analyses, presented a determination coefficient of 0.3106, while the Artificial Neural Network achieved a level of 80.00% of success in the classification of values from the sensory analysis.
Resumo:
INTRODUCTION: The correct identification of the underlying cause of death and its precise assignment to a code from the International Classification of Diseases are important issues to achieve accurate and universally comparable mortality statistics These factors, among other ones, led to the development of computer software programs in order to automatically identify the underlying cause of death. OBJECTIVE: This work was conceived to compare the underlying causes of death processed respectively by the Automated Classification of Medical Entities (ACME) and the "Sistema de Seleção de Causa Básica de Morte" (SCB) programs. MATERIAL AND METHOD: The comparative evaluation of the underlying causes of death processed respectively by ACME and SCB systems was performed using the input data file for the ACME system that included deaths which occurred in the State of S. Paulo from June to December 1993, totalling 129,104 records of the corresponding death certificates. The differences between underlying causes selected by ACME and SCB systems verified in the month of June, when considered as SCB errors, were used to correct and improve SCB processing logic and its decision tables. RESULTS: The processing of the underlying causes of death by the ACME and SCB systems resulted in 3,278 differences, that were analysed and ascribed to lack of answer to dialogue boxes during processing, to deaths due to human immunodeficiency virus [HIV] disease for which there was no specific provision in any of the systems, to coding and/or keying errors and to actual problems. The detailed analysis of these latter disclosed that the majority of the underlying causes of death processed by the SCB system were correct and that different interpretations were given to the mortality coding rules by each system, that some particular problems could not be explained with the available documentation and that a smaller proportion of problems were identified as SCB errors. CONCLUSION: These results, disclosing a very low and insignificant number of actual problems, guarantees the use of the version of the SCB system for the Ninth Revision of the International Classification of Diseases and assures the continuity of the work which is being undertaken for the Tenth Revision version.
Resumo:
The differential diagnosis of urinary incontinence classes is sometimes difficult to establish. As a rule, only the results of urodynamic testing allow an accurate diagnosis. However, this exam is not always feasible, because it requires special equipment, and also trained personnel to lead and interpret the exam. Some expert systems have been developed to assist health professionals in this field. Therefore, the aims of this paper are to present the definition of Artificial Intelligence; to explain what Expert System and System for Decision Support are and its application in the field of health and to discuss some expert systems for differential diagnosis of urinary incontinence. It is concluded that expert systems may be useful not only for teaching purposes, but also as decision support in daily clinical practice. Despite this, for several reasons, health professionals usually hesitate to use the computer expert system to support their decision making process.
Resumo:
The objective of this work was to evaluate the water flow computer model, WATABLE, using experimental field observations on water table management plots from a site located near Hastings, FL, USA. The experimental field had scale drainage systems with provisions for subirrigation with buried microirrigation and conventional seepage irrigation systems. Potato (Solanum tuberosum L.) growing seasons from years 1996 and 1997 were used to simulate the hydrology of the area. Water table levels, precipitation, irrigation and runoff volumes were continuously monitored. The model simulated the water movement from a buried microirrigation line source and the response of the water table to irrigation, precipitation, evapotranspiration, and deep percolation. The model was calibrated and verified by comparing simulated results with experimental field observations. The model performed very well in simulating seasonal runoff, irrigation volumes, and water table levels during crop growth. The two-dimensional model can be used to investigate different irrigation strategies involving water table management control. Applications of the model include optimization of the water table depth for each growth stage, and duration, frequency, and rate of irrigation.
Resumo:
The simulation programs are important tools to analyze the different energetic alternatives, including the use of renewable energy. The objective of this study was to analyze comparatively the different computer tools available for modeling of solar water heaters. Among the main simulation software of solar thermal systems, there are: RETScreen International, EnergyPlus, TRNSYS, SolDesigner, SolarPro, e T*SOL. Among the tools mentioned, only EnergyPlus and RETScreen International are free, but they allow obtaining interesting results when applied together. The first one has a detailed module of energy analysis of solar water heaters, while the second one provides an detailed economic feasibility study and an assessment of emissions of greenhouse gases. RETScreen International and EnergyPlus programs are aimed at a diverse audience, including designers, researchers and energy planners.
Resumo:
The augmented reality (AR) technology has applications in many fields as diverse as aeronautics, tourism, medicine, and education. In this review are summarized the current status of AR and it is proposed a new application of it in weed science. The basic algorithmic elements for AR implementation are already available to develop applications in the area of weed economic thresholds. These include algorithms for image recognition to identify and quantify weeds by species and software for herbicide selection based on weed density. Likewise, all hardware necessary for AR implementation in weed science are available at an affordable price for the user. Thus, the authors propose weed science can take a leading role integrating AR systems into weed economic thresholds software, thus, providing better opportunities for science and computer-based weed control decisions.