185 resultados para Color temperature
em Scielo Saúde Pública - SP
Resumo:
Body color polymorphism of urban populations of cosmopolite fly Drosophila kikkawai Burla, 1954 was investigated in relation to its possible association with environmental temperature. Samples of D. kikkawai were collected in spring, summer, autumn and winter between 1987 to 1988, in zones with different levels of urbanization in the southern Brazilian city of Porto Alegre, Rio Grande do Sul. A clear association was observed between darker flies and both seasons with low temperatures and areas of low urbanization (where temperature is generally lower than in urbanized areas). Results of preliminary laboratory experiments involving six generations of flies grown in chambers at temperatures of 17º and 25ºC confirmed this tendency to a relationship between body color and temperature, with allele frequency of the main gene involved in body pigmentation changing over time.
Resumo:
This study aimed at evaluating the effects of ethylene on peel color and compositional changes in ‘Lane late’ orange stored under refrigerated and ambient conditions. Physiologically mature, but green-peeled, oranges were exposed to ethylene gas under room temperature and high relative humidity for 24 hours. Storage chamber was ventilated with fresh air after 12 hours to mitigate consequences derived from fruit respiration. Both nondestructive analysis, such as peel color (hue angle, chromaticity, and brightness) and weight loss, and destructive ones (soluble solids, titratable acidity, pH, soluble solids to acidity ratio, and puncture force) were performed upon harvest, after degreening, and every three days during eighteen days in storage. Experiment was carried out using an entirely randomized design with thirty replications for nondestructive and four replications for destructive analyses, in a split plot scheme. Exposure to ethylene ensured a golden yellow peel for both fruit stored under ambient and refrigerated conditions. High relative humidity, associated with low temperature prevented fruit from losing moisture. Fruit exposure to ethylene did not affect weight loss, soluble solids, titratable acidity, pH, soluble solids, acidity ratio, or puncture force.
Resumo:
Anthocyanins are the pigments responsible for the color of most red grapes and are easily degraded following various reaction mechanisms affected by oxygen, enzymes, pH, and temperature among other variables. In this study, a jam model system was developed using Merlot and Bordô grape extracts and polysaccharides (xanthan and locust bean gums) and different temperatures (45, 55 and 65 °C). The stability of the anthocyanin pigments and the rheological behavior of the jam model system were studied. For the determination of the stability, the half-life time and first-order reaction rate constants for the anthocyanin pigments were calculated. The rheological behavior was determined through the Power law model. The jam model system produced using a temperature of 45 °C showed the best results for the anthocyanin half-life time. The first-order reaction rate constants for the 45, 55, and 65 °C treatments were not significantly different among each other (p > 0.05). It was observed that with an increase in the jam model system temperature there was an increase in the index of consistency.
Resumo:
The purpose of this study was to follow-up color changes in low-calorie strawberry and guava jellies during storage. To this end, one formulation of each flavor was prepared varying the application of hydrocolloids (pectin and modified starch). The jellies were studied regarding pH, soluble solids, water activity and syneresis. In order to follow-up color changes, the samples remained stored for 180 days in chambers with controlled temperatures of 10 °C (control) and 25 °C (commercial), and color instrumental analyses (L*, a*, and b*) were performed every 30 days. Arrhenius model was applied to reaction speeds (k) at different temperatures, where light strawberry and guava jellies showed greater color changes when stored at 25 °C compared to the samples stored at 10 °C. Activation energy values between 13 and 15 kcal.mol-1 and Q10 values between 2.1 and 2.3 were obtained for light strawberry jelly and light guava jelly, respectively. Therefore, it was concluded that, with respect to color changes, every 10 °C temperature increase reduces light jellies shelf-life by half.
Resumo:
This study investigated the degradation kinetics of the sensory attributes of commercial whole mango (cv. Ubá) juice and evaluated its sensory acceptability during storage. Samples of the product were stored in a BOD incubator at 25, 35, and 45 ºC under 24 hours light (650 lux) for 120 days. Sensory analyses (Quantitative Descriptive Analysis - QDA) were conducted with trained panel and consumers. The correlations between sensory and physicochemical characteristics (instrumental color and vitamin C content) were also assessed. Flavor, aroma, and color vary with temperature and time of storage. Aroma and flavor were most affected by temperature with values of Q10 and Ea equal to 4.16 and 25.31 kcal.mol-1; and 3.61 and 22.80 kcal.mol-1, respectively. The sensory changes observed by the trained panel are related to the degradation of vitamin C and changes in the color coordinates (L* and ΔE*) of mango juice. However, consumers were unable to detect changes in the overall quality of the juices. It was observed that the QDA can be a useful tool to assess shelf-life.
Resumo:
The importance of minimally processed commodities in the retail groceries of most developed countries has been rising continuously during the last decades. Cantaloupe melon is used more than any other fruit in fresh-cut processing. Ultraviolet (UV) light has been extensively used to simulate biological stres in plants and for determining resistance mechanisms of plant tissues. In this study the effect of ultraviolet irradiation on some properties of fresh-cut cantalope melon was determined during storage. Freshly cut cantalope melons cubes treated with ultraviolet irradiation at the doses of 1, 2 or 3 min before storage, and then placed in a cold room at 5±1°C temperature and 85-90% RH. Hue angle values of control group is low compared to UV-C treated samples, whereas L values of is high. EL of UV treated samples higher than those of control group. Total soluble solids of fresh-cut melon samples in UC3 treatment increased during storage. The results indicate that UV-C treatments on fresh-cut cantaloupe melon cubes increased total soluble solids independently from water loss.
Resumo:
Calcium chloride is widely used in industries as a firming agent, and also to extend shelf-life of vegetables. The aim of this study was to determine, the effect of different doses of calcium chloride on biochemical and color properties of fresh-cut green bean. Fresh-cut green beans were dipped for 90 seconds in 0.5%, 1%, 2% and 3% solution of calcium chloride at 25°C. The fresh-cut green bean samples were packaged in polystyrene foam dishes, wrapped with stretch film and stored in a cold room at 5±1°C temperature and 85-90% RH. Calcium chloride treatments did not retain the green color of samples. Whiteness index, browning index and total color difference (ΔE) values of CaCl2 treated samples were high. Saturation index and hue angle were low compared to the control, especially at higher doses of CaCl2. Polyphenol oxidase (PPO) enzyme activity in samples treated with CaCl2 at 3% doses, was low at the 7th days of storage than with other treatments. Fructose and sucrose content of samples increased in all treatment groups whereas glucose level decreased during the first 4th days of storage.
Resumo:
Abstract Apricot is one of the fruits dried by using different methods, such as sun, convective or microwave drying. The effects of drying methods on the components of this fruit differ depending upon the temperature or time parameters. In this research, the impacts of convective, microwave and microwave–convective drying techniques on color, β-carotene, minerals and antioxidant activity of apricots were investigated. The color values (L*, b*,ΔEab, h° and C*ab) of dried fruit were decreased, while the a* values increased. Compared with a fresh sample, the dried apricots showed a 1.4-3.9-fold proportional increase in β-carotene based on the increment of dry matter. The samples dried at high temperature and microwave levels, at 75 °C+90 watt and 75 °C+160 watt, showed lower antioxidant activity. Of the different drying treatments, the microwave-convective method (50 °C+160 watt) obtained a higher β-carotene content while maintaining antioxidant activity with a short drying time.
Resumo:
This study aimed to evaluate the postharvest behavior of peach cv. Aurora 1 harvested in the Zona da Mata region of Minas Gerais in two ripening stages and kept under different storage temperatures. Fruits on mid-ripe and fully ripe stages were stored at three temperatures: 5.6 ± 1.57 °C and 72.8 ± 3.8% RH; 10.4 ± 0.5 °C and 95.8 ± 5.5% RH; 21.04 ± 1.63 °C and 96.9 ± 2.6% RH up to 28 storage days (SD) . During storage, fruits stored at 21.04 ± 1.63 °C were evaluated every two days until 8 SD, and every four days for fruits stored at other temperatures. The harvest day was assigned as day zero. The variables evaluated were CO2 production, color of the pericarp and pulp, fresh mass loss, flesh firmness, total soluble solids, titratable acidity, contents of ascorbic acid and carotenoids. The fresh mass loss increased during storage, peaking at 5.6 °C. The reduction in ascorbic acid content was higher in fully ripe fruits at all temperatures. Mid-ripe fruits reached the end of the storage period with better quality. The temperature of 10.4 °C was the most efficient in keeping postharvest quality of peach cv. Aurora 1 harvested in the Zona da Mata region.
Resumo:
The objective of this study was to evaluate the influence of the color and phenolic compounds of strawberry jam on acceptance during storage. Jams were processed, stored for 120 days and evaluated monthly for chromatic characteristics, total phenolic compounds, total anthocyanins (ANT), total ellagic acid (TEA), flavonoids and free ellagic acid (FEA), and sensory acceptance as well. Data were submitted to analysis of variance (ANOVA) and the means were compared by the Least Significant Difference (LSD). Cluster Analysis and Partial Least Square Regression (PLS) were performed to investigate the relationships between instrumental data and acceptance. Contents of ANT, TEA and redness decreased during storage. Other chemical characteristics and sensory acceptance showed a nonlinear behavior. Higher acceptance was observed after 60 days, suggesting a trend of quality improvement followed by decline to the initial levels. The same trend was observed for lightness, non-pigment flavonoids and FEA. According to PLS map, for consumers in cluster 2, acceptance was associated to jams at 60 days and to luminosity, FEA, and non-pigment flavonoids. For cluster 1, a positive association between flavor liking, jam at initial storage, and the contents of TEA and ANT was indicated. Jams at 120 days were positively associated to hue and negatively associated to color liking, for cluster 1. Color and texture were positively correlated to overall liking for cluster 2, whereas for cluster 1, overall acceptance seemed to be more associated to flavor liking. Changes in color and phenolic compounds slightly influenced the acceptance of strawberry jams, but in different ways for consumers clusters.
Resumo:
OBJECTIVE: Describe the overall transmission of malaria through a compartmental model, considering the human host and mosquito vector. METHODS: A mathematical model was developed based on the following parameters: human host immunity, assuming the existence of acquired immunity and immunological memory, which boosts the protective response upon reinfection; mosquito vector, taking into account that the average period of development from egg to adult mosquito and the extrinsic incubation period of parasites (transformation of infected but non-infectious mosquitoes into infectious mosquitoes) are dependent on the ambient temperature. RESULTS: The steady state equilibrium values obtained with the model allowed the calculation of the basic reproduction ratio in terms of the model's parameters. CONCLUSIONS: The model allowed the calculation of the basic reproduction ratio, one of the most important epidemiological variables.
Resumo:
OBJECTIVE To analyze the effect of air pollution and temperature on mortality due to cardiovascular and respiratory diseases. METHODS We evaluated the isolated and synergistic effects of temperature and particulate matter with aerodynamic diameter < 10 µm (PM10) on the mortality of individuals > 40 years old due to cardiovascular disease and that of individuals > 60 years old due to respiratory diseases in Sao Paulo, SP, Southeastern Brazil, between 1998 and 2008. Three methodologies were used to evaluate the isolated association: time-series analysis using Poisson regression model, bidirectional case-crossover analysis matched by period, and case-crossover analysis matched by the confounding factor, i.e., average temperature or pollutant concentration. The graphical representation of the response surface, generated by the interaction term between these factors added to the Poisson regression model, was interpreted to evaluate the synergistic effect of the risk factors. RESULTS No differences were observed between the results of the case-crossover and time-series analyses. The percentage change in the relative risk of cardiovascular and respiratory mortality was 0.85% (0.45;1.25) and 1.60% (0.74;2.46), respectively, due to an increase of 10 μg/m3 in the PM10 concentration. The pattern of correlation of the temperature with cardiovascular mortality was U-shaped and that with respiratory mortality was J-shaped, indicating an increased relative risk at high temperatures. The values for the interaction term indicated a higher relative risk for cardiovascular and respiratory mortalities at low temperatures and high temperatures, respectively, when the pollution levels reached approximately 60 μg/m3. CONCLUSIONS The positive association standardized in the Poisson regression model for pollutant concentration is not confounded by temperature, and the effect of temperature is not confounded by the pollutant levels in the time-series analysis. The simultaneous exposure to different levels of environmental factors can create synergistic effects that are as disturbing as those caused by extreme concentrations.
Resumo:
In these experiments the ratio of male to female S. mansoni larvae in D. glabrata from Belo Horizonte and Ribeirão das Neves Minas Gerais, Brazil, either reared in laboratoty or collected in the field, varied from 1:1 to 1:1.3 or 1.4:1. Cercariae of LE strain of Schistosoma mansoni, shed by 39 snails maintained at 25±0.5ºC were used to infect mice on a weekly basis. Subsequent perfusion resulted in 76.6% male and 23.4% female worms. The cercariac produced by 32 infected snails maintained at 27+0.5°C were inoculated into mice and produced 43.4% male and 56.6% female worms (p<0.05). Cercariae eliminated by snails collected in Barreiro and Ressaca, Belo Horizonte, during hot months, produced 45.7 to 47.7% male and 52.3 to 54.3% female worms. A lower number of cercariae shed by snails collected in Gorduras, Belo Horizonte, at 20+3.0°C, produced 51.6% male and 48.4% female worms. Thus, in this region the infection of vertebrate hosts with S. mansoni cercariae would be more severe in the summer due to the higher level of parasites and the number of eggs.
Resumo:
Third stage larvae (L3) from Angiostrongylus costaricensis were incubated in water at room temperature and at 5 ° C and their mobility was assessed daily for 17 days. Viability was associated with the mobility and position of the L3, and it was confirmed by inoculation per os in albino mice. The number of actively moving L3 sharply decreased within 3 to 4 days, but there were some infective L3 at end of observation. A mathematical model estimated 80 days as the time required to reduce the probability of infective larvae to zero. This data does not support the proposition of refrigerating vegetables and raw food as an isolated procedure for prophylaxis of human abdominal angiostrongylosis infection.
Resumo:
Observations were made on the mortality of Dipetalogaster maximus in relation to humidity and temperature in controlled conditions. The bugs survived longer at higher relative humidities and at lower temperatures, but when these results were plotted against vapour pressure déficit, no independent temperature effect was seen. The results may be explained by thefaster depletion of water reserves at higher vapour pressure deficits. D. maximus did not increase its resistance to water vapour transferat higher vapour pressure deficits. In orderto increase survival rates when D. maximus is used for xenodiagnosis in field conditions it should be protected against high temperatures and low humidities.