44 resultados para Cloning of cDNA encoding Large isoform of rubisco activase
em Scielo Saúde Pública - SP
Resumo:
Cytochrome p450s (cyp450s) are a family of structurally related proteins, with diverse functions, including steroid synthesis and breakdown of toxins. This paper reports the full-length sequence of a novel cyp450 gene, the first to be isolated from the tropical freshwater snail Biomphalaria glabrata, an important intermediate host of Schistosoma mansoni. The nucleotide sequence is 2291 bp with a predicted amino acid sequence of 584aa. The sequence demonstrates conserved cyp450 structural motifs, but is sufficiently different from previously reported cyp450 sequences to be given a new classification, CYP320A1. Initially identified as down-regulated in partially resistant snails in response to S. mansoni infection, amplification of this gene using RT-PCR in both totally resistant or susceptible snail lines when exposed to infection, and all tissues examined, suggests ubiquitous expression. Characterization of the first cyp450 from B. glabrata is significant in understanding the evolution of these metabolically important proteins.
Resumo:
Numerous proteinase activities have been shown to be essential for the survival of Plasmodium falciparum. One approach to antimalarial chemotherapy, would be to block specifically one or several of these activities, by using compounds structurally analogous to the substrates of these proteinases. Such a strategy requires a detailed knowledge of the active site of the proteinase, in order to identify the best substrate for the proteinase. Aiming at developing such a strategy, two proteinases previously identified in our laboratory, were chosen for further characterization of their molecular structure and properties: the merozoite proteinase for erythrocytic invasion (MPEI), involved in the erythrocyte invasion by the merozoites, and the Pf37 proteinase, which hydrolyses human spectrin in vitro.
Resumo:
The a-globin major genes from diploid and tetraploid Odontophrynus americanus were studied using PCR-based technology. The cloned and sequenced amplified fragments were shown to contain most of the exon II sequences as well as the whole exon III sequence of the a-globin gene. Unexpectedly, intron 2 was entirely absent in the amplified fragments of both 2n and 4n origin. High conservation was observed among the obtained sequences when compared to corresponding sequences from human and Xenopus laevis origin. The possibility that these sequences might be pseudogenes is raised
Resumo:
Cloning of the T-cell receptor genes is a critical step when generating T-cell receptor transgenic mice. Because T-cell receptor molecules are clonotypical, isolation of their genes requires reverse transcriptase-assisted PCR using primers specific for each different Valpha or Vß genes or by the screening of cDNA libraries generated from RNA obtained from each individual T-cell clone. Although feasible, these approaches are laborious and costly. The aim of the present study was to test the application of the non-palindromic adaptor-PCR method as an alternative to isolate the genes encoding the T-cell receptor of an antigen-specific T-cell hybridoma. For this purpose, we established hybridomas specific for trans-sialidase, an immunodominant Trypanosoma cruzi antigen. These T-cell hybridomas were characterized with regard to their ability to secrete interferon-gamma, IL-4, and IL-10 after stimulation with the antigen. A CD3+, CD4+, CD8- interferon-gamma-producing hybridoma was selected for the identification of the variable regions of the T-cell receptor by the non-palindromic adaptor-PCR method. Using this methodology, we were able to rapidly and efficiently determine the variable regions of both T-cell receptor chains. The results obtained by the non-palindromic adaptor-PCR method were confirmed by the isolation and sequencing of the complete cDNA genes and by the recognition with a specific antibody against the T-cell receptor variable ß chain. We conclude that the non-palindromic adaptor-PCR method can be a valuable tool for the identification of the T-cell receptor transcripts of T-cell hybridomas and may facilitate the generation of T-cell receptor transgenic mice.
Resumo:
To illustrate the construction of precursor complementary DNAs, we isolated mRNAs from whole venom samples. After reverse transcription polymerase chain reaction (RT-PCR), we amplified the cDNA coding for a neurotoxic protein, phospholipase A2 D49 (PLA2 D49), from the venom of Crotalus durissus collilineatus (Cdc PLA2). The cDNA encoding Cdc PLA2 from whole venom was sequenced. The deduced amino acid sequence of this cDNA has high overall sequence identity with the group II PLA2 protein family. Cdc PLA2 has 14 cysteine residues capable of forming seven disulfide bonds that characterize this group of PLA2 enzymes. Cdc PLA2 was isolated using conventional Sephadex G75 column chromatography and reverse-phase high performance liquid chromatography (RP-HPLC). The molecular mass was estimated using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We tested the neuromuscular blocking activities on chick biventer cervicis neuromuscular tissue. Phylogenetic analysis of Cdc PLA2 showed the existence of two lines of N6-PLA2, denominated F24 and S24. Apparently, the sequences of the New World’s N6-F24-PLA2 are similar to those of the agkistrodotoxin from the Asian genus Gloydius. The sequences of N6-S24-PLA2 are similar to the sequence of trimucrotoxin from the genus Protobothrops, found in the Old World.
Resumo:
DNA extracted from peripheral blood of two Ecuadorian patients showing severe digestive pathology was amplified by the polymerase chain reaction using a Trypanosoma cruzi specific oligonucleotide primers derived from the primary sequence of a cDNA encoding for a 24 kDa excretory/secretory protein. The positive PCR results together with the clinical findings confirmed that both patients had a digestive pathology due to Chagas' disease. This pathology could be more frequent than previously described in the chagasic endemic regions of Andean countries.
Resumo:
Inhibition of one Leishmania subspecies by exometabolites of another subspecies, a phenomenon not previously reported, is suggested by our recent observations in cell cloning experiments with Leishmania mexicana mexicana and Leishmania mexicana amazonensis. Clones were identified using the technique of schizodeme analysis. The phenomenon observed is clearly relevant to studies of parasite isolation, leishmanial metabolism, cross-immunity and chemotherapy.
Resumo:
Molecular cloning of components of protective antigenic preparations have suggested that related parasite fatty acid binding proteins could form the basis of the well documented protective, immune cross reactivity between the parasitic trematode worms Fasciola hepatica and Schistosoma mansoni. We have now confirmed the cross protective potential of parasite fatty acid binding proteins and suggest that it may be possible to produce a single vaccine that would be effective against at least two parasites, F. hepatica and S. mansoni of veterinary and human importance respectively.
Resumo:
Adrenal glucocorticoid secretion is regulated by adrenocorticotropic hormone (ACTH) acting through a specific cell membrane receptor (ACTH-R). The ACTH-R is a member of the G protein superfamily-coupled receptors and belongs to the subfamily of melanocortin receptors. The ACTH-R is mainly expressed in the adrenocortical cells showing a restricted tissue specificity, although ACTH is recognized by the other four melanocortin receptors. The cloning of the ACTH-R was followed by the study of this gene in human diseases such as familial glucocorticoid deficiency (FGD) and adrenocortical tumors. FGD is a rare autosomal recessive disease characterized by glucocorticoid deficiency, elevated plasma ACTH levels and preserved renin/aldosterone secretion. This disorder has been ascribed to an impaired adrenal responsiveness to ACTH due to a defective ACTH-R, a defect in intracellular signal transduction or an abnormality in adrenal cortical development. Mutations of the ACTH-R have been described in patients with FGD in segregation with the disease. The functional characterization of these mutations has been prevented by difficulties in expressing human ACTH-R in cells that lack endogenous melanocortin receptor activity. To overcome these difficulties we used Y6 cells, a mutant variant of the Y1 cell line, which possesses a non-expressed ACTH-R gene allowing the functional study without any background activity. Our results demonstrated that the several mutations of the ACTH-R found in FGD result in an impaired cAMP response or loss of sensitivity to ACTH stimulation. An ACTH-binding study showed an impairment of ligand binding with loss of the high affinity site in most of the mutations studied.
Resumo:
In the search for Leishmania recombinant antigens that can be used as a vaccine against American Cutaneous Leishmaniasis, we identified a Leishmania (Leishmania) amazonensis recombinant protein of 33 kD (Larp33) which is recognized by antibodies and peripheral blood leukocytes (PBL) from subjects vaccinated with Leishvacin ®, Larp33 was expressed in Escherichia coli after cloning of a 2,2 kb Sau3A digested genomic fragment of L. (L.) amazonensis into the pDS56-6 His vector. Immunoblotting analysis indicated that Larp33 corresponds to an approximately 40-kD native protein expressed in promastigotes of L.(L.) amazonensis and L. (Viannia) braziliensis. Northern blots of total RNA also demonstrated that the gene coding for this protein is expressed in promastigotes of the major lineages of Leishmania causing American Cutaneous Leishmaniasis. Larp33 induced partial protection in susceptible mouse strains (BALB/c and C57BL/10) against L. (L.) amazonensis after vaccination using Bacille Calmette-Guerin (BCG) as adjuvant. In vitro stimulation of splenocytes from BALB/c protected mice with Larp33 elicited the secretion of IL-2 and IFN-g, suggesting that a Th1 cell-mediated protective response is associated with the resistance observed in these mice. As revealed by its immunogenic and antigenic properties, this novel recombinant antigen is a suitable candidate to compose a vaccine against cutaneous leishmaniasis
Resumo:
Entamoeba histolytica, the protozoan parasite causing human amoebisis, has recently been found to comprise two genetically distinct forms, potentially pathogenic and constitutively nonpathogenic ones. Host tissue destruction by pathogenic forms is belived to result from cell functions mediaed by a lectin-type adherence receptor, a pore-forming peptide involved in host cell lysis, and abundant expression of cysteine proteinase(s). Isolation and molecular cloning of these amoeba products have provided the tools for structural analyses and manipulations of cell functions including comparisons between pathogenic and nonpathogenic forms.