21 resultados para Climate Changes

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Different climate models, modeling methods and carbon emission scenarios were used in this paper to evaluate the effects of future climate changes on geographical distribution of species of economic and cultural importance across the Cerrado biome. As the results of several studies have shown, there are still many uncertainties associated with these projections, although bioclimatic models are still widely used and effective method to evaluate the consequences for biodiversity of these climate changes. In this article, it was found that 90% of these uncertainties are related to methods of modeling, although, regardless of the uncertainties, the results revealed that the studied species will reduce about 78% of their geographic distribution in Cerrado. For an effective work on the conservation of these species, many studies still need to be carried out, although it is already possible to observe that climate change will have a strong influence on the pattern of distribution of these species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Knowledge of the carrion-breeding insects present at a local level is important and necessary for defining the post-mortem interval. Climate changes and globalisation are affecting species ranges and population dynamics. In this note, we report the incidence of Chrysomya albiceps (Diptera: Calliphoridae) on dead human bodies and carrion in Northern Italy. These data confirm the spread of this species in the Northern regions. The partial sequencing of a 583-bp region of the cytochrome oxidase subunit 1 gene of an Adriatic population did not reveal any difference compared to the same genomic region in the African and South American populations of this species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Current clinical data show a clear relationship between the zoonosis rates of Diphyllobothrium pacificum and Anisakis caused by the El Niño Southern Oscillations (ENSO) phenomenon along the Chilean coast. These parasites are endemic to the region and have a specific habitat distribution. D. pacificum prefers the warmer waters in the northern coast, while Anisakis prefers the colder waters of Southern Chile. The ENSO phenomenon causes a drastic inversion in the seawater temperatures in this region, modifying both the cool nutrient-rich seawater and the local ecology. This causes a latitudinal shift in marine parasite distribution and prevalence, as well as drastic environmental changes. The abundance of human mummies and archaeological coastal sites in the Atacama Desert provides an excellent model to test the ENSO impact on antiquity. We review the clinical and archaeological literature debating to what extent these parasites affected the health of the Chinchorros, the earliest settlers of this region. We hypothesise the Chinchorro and their descendants were affected by this natural and cyclical ENSO phenomenon and should therefore present fluctuating rates of D. pacificum and Anisakis infestations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In short space of time increase in temperature and rainfall can affect vector populations and, consequently, the diseases for them transmitted. The present study analyzed the effect of small temperature and humidity variations on the fecundity, fertility and survival of Aedes aegypti. These parameters were analyzed using individual females at temperatures ranging from 23 to 27 °C (mean 25 °C); 28 to 32 °C (mean 30 °C) and 33 to 37 °C (mean 35 ºC) associated to 60±8% and 80±6% relative humidity. Females responded to an increase in temperature by reducing egg production, oviposition time and changing oviposition patterns. At 25 ºC and 80% relative humidity, females survived two-fold more and produced 40% more eggs when compared to those kept at 35 ºC and 80% relative humidity. However, in 45% of females kept at 35 ºC and 60% relative humidity oviposition was inhibited and only 15% females laid more than 100 eggs, suggesting that the intensity of the temperature effect was influenced by humidity. Gradual reductions in egg fertility at 60% relative humidity were observed with the increase in temperature, although such effect was not found in the 80% relative humidity at 25 º C and 30 º C. These results suggest that the reduction in population densities recorded in tropical areas during seasons when temperatures reach over 35 ºC is likely to be strongly influenced by temperature and humidity, with a negative effect on several aspects of mosquito biology.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The evolution of organic matter sources in soil is related to climate and vegetation dynamics in the past recorded in paleoenvironmental Quaternary deposits such as peatlands. For this reason, a Histosol of the mineralotrophic peatland from the Pau-de-Fruta Special Protection Area - SPA, Espinhaço Meridional, State of Minas Gerais, was described and characterized to evidence the soil constituent materials and properties as related to changes in environmental conditions, supported by the isotopic and elementary characterization of soil C and N and 14C ages. Samples were collected in a depression at 1,350 m asl, where Histosols are possibly more developed due to the great thickness (505 cm). Nowadays, the area is colonized by vegetation physiognomies of the Cerrado Biome, mainly rocky and wet fields (Campo Rupestre and Campo Úmido), aside from fragments of Semidecidual Seasonal Forest, called Capões forests. The results this study showed that early the genesis of the analyzed soil profile showed a high initial contribution of mostly herbaceous organic matter before 8,090 ± 30 years BP (14C age). In the lower-mid Holocene, between 8,090 ± 30 years AP (14C age) to ± 4,100 years BP (interpolated age), the vegetation gradually became more woody, with forest expansion, possibly due to increased humidity, suggesting the existence of a more woody Cerrado in the past than at present. Drier climate conditions than the current were concluded ± 2,500 years BP (interpolated age) and that after 430 years BP (14C age) the forest gave way to grassland, predominantly. After the dry season, humidity increased to the current conditions. Due to these climate fluctuations during the Holocene, three decomposition stages of organic matter were observed in the Histosols of this study, with prevalence of the most advanced (sapric), typical of a deposit in a highly advanced stage of pedogenetic evolution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Because of the climate changes occurring across the planet, especially global warming, the different forms of agricultural soil use have attracted researchers´ attention. Changes in soil management may influence soil respiration and, consequently, C sequestration. The objectives of this study were to evaluate the long-term influence of liming on soil respiration and correlate it with soil chemical properties after two years of liming in a no-tillage system. A randomized complete block design was used with six replications. The experimental treatments consisted of four lime rates and a control treatment without lime. Two years after liming, soil CO2 emission was measured and the soil sampled (layers 0-5, 5-10, 10-20, and 20-30 cm). The P, Ca2+ e Mg2+ soil contents and pH and base saturation were determined. CO2 emission from soil limed at the recommended rate was 24.1 % higher, and at twice the recommended rate, 47.4 % higher than from unlimed soil. Liming improved the chemical properties, and the linear increase in soil respiration rate correlated positively with the P, Ca2+ and Mg2+ soil contents, pH and base saturation, and negatively with H + Al and Al3+ contents. The correlation coefficient between soil respiration rate and chemical properties was highest in the 10-20 cm layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Periodically, during petroleum shortage, fatty acids and their derivatives have been used as alternative fuels to those derived from petroleum. Different approaches have been proposed, including the use of neat fats and oils or their derivatives. Indeed, the utilization of biodiesel produced by alcoholysis of triacilglycerides or esterification of fatty acids, or hydrocarbons obtained from cracking of fatty materials were studied and used in several countries. Increasing concerns about energy security and climate changes have lead several countries, including Brazil, to start up biofuels programs. Different technologies are currently being developed in order to produce biofuels with economical feasibility. In this work are discussed alternative fatty raw-materials and processing technologies that are currently being studied in order to produce fuels suitable to sustainable substitute diesel fuel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Scientific evidence on climate changes at global level has gained increasing interest in the scientific community in general. The impacts of climate change as well as anthropogenic actions may cause errors in hydro-agricultural projects existent in the watershed under study. This study aimed to identify the presence or absence of trend in total annual precipitation series of the watershed of the Mirim Lagoon, state of Rio Grande do Sul-RS / Brazil / Uruguay (Brazilian side) as well as to detect the period in which they occurred. For that, it was analyzed the precipitation data belonging to 14 weather stations. To detect the existence of monotonic trend and change points, it was used the nonparametric tests of Mann-Kendall and Mann-Whitney, the "t" test of Student for two samples of unpaired data (parametric), as well as the technique of progressive mean. The Weather Station 3152014 (Pelotas) presented changes in the trend in the series of annual precipitation in the period from 1953 to 2007. The methodologies that use subdivided series were more efficient in detecting change in trend when compared with the Mann-Kendall test, which uses the complete series (from 1921 to 2007).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was carried out to determine some physiological and phenological responses of the bean under high [CO2] and drought stress. The experiment was conducted from April to July 2009 in Viçosa, Brazil. The open-top chambers were used to enrich the air with CO2, whereas the drought stress was applied between the flowering and the ripening. The randomized block design was used, with four replicates in the subplots. The following plots were [CO2] at 700ppm (F1) and [CO2] environmental (F2) and the subplots were well watering (S1) and drought stress (S2). The results were subjected to Anova and the Tukey test (P < 0.05). For the treatments F1S1 and F1S2 the photosynthetic rate showed increments of 59% and the transpiration reduction of 12%. The yield, leaf temperature and stomatal conductance were not significant different to high [CO2], different from the dry matter, who showed increment of 20% (F1S1) and the water use efficiency who showed increase of 90% for high [CO2]. The osmotic potential was lower in plants under drought stress (F2S2 and F1S2), followed by plants under high [CO2] (F1S1). Despite the increment in photosynthesis, high [CO2] does not guarantee higher yield.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ABSTRACT Cocoa is an important commercial crop in the tropics; and estimating the carbon emissions in the producing-areas is a worthwhile effort. The main goal of the current paper was to evaluate the carbon footprint (CF) per kilogram of Colombian cocoa bean produced under conventional and agroforestry managements, following the methods proposed by PAS 2050. In this research, we compared our results to other worldwide researches, showing an overview of the current limitations and challenges involving the CF researches. Our results showed that all calculated environmental burdens were lower for the conventional management. In the agroforestry practice, composting of cocoa pod husks contributed with approximately 34.00E+00 g methane and 2.55E+00 g nitrous oxide emissions per kilogram of cocoa grain produced. Therefore, such practice could reduce CF by 6.00E+00 kg CO2 Eq kg-1, which is certainly a significant amount. These cocoa residues left on the ground have a strong impact on CF of both studied managements due to the anaerobic decomposition of organic matter, which represents more than 85% of emissions. We concluded that both evaluated production processes can emit environmental burdens at the same magnitude. Definitely, there is a widespread need to improve cocoa production system by changing old and less productive plants to the so called clones to ensure cocoa yield and quality worldwide.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of climatic variations on the herbaceous component of the "caatinga" vegetation was examined in the state of Pernambuco, Brazil. A total of 105 1 × 1 m-plots were established, of which 35 were in a level micro-habitat, 35 in a riparian micro-habitat, and 35 in a stony microhabitat. During two consecutive years all herbaceous plants in these plots were counted, measured (height and diameter), and collected for identification. The Shannon-Wiener diversity index and the equitability were calculated for each year, as well as the density, frequency, dominance, total basal area and importance index for each species. The total annual pluviometric was 819.5 and 448.8 mm in 2002 and 2003, respectively. The herbaceous flora in the study area was composed of 71 species, of which 58 were sampled in the plots. The families with the greatest species richness were Malvaceae (8 species), Euphorbiaceae (7), Poaceae (6), Convolvulaceae (4), Fabaceae (4), and Portulacaceae (4). The diversity indices were 2.66 and 3.01 nats ind-1 in 2002 and 2003, respectively. The density, frequency, dominance and importance value of herbaceous populations, as well as, the height and diameter of plants were low in the dryer year. The riparian group was the most isolated of the microhabitats examined, both in terms of its floristic and its population structure. Annual seasonal climatic variations greatly modified these populations structure during the course of this study, emphasizing the fact that long-term studies are needed in order to better understand the dynamics of the herbaceous component of the "caatinga" vegetation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ABSTRACT Amphibians are the most threatened vertebrate group according to the IUCN. Land-use and land cover change (LULCC) and climate change (CC) are two of the main factors related to declining amphibian populations. Given the vulnerability of threatened and rare species, the study of their response to these impacts is a conservation priority. The aim of this work was to analyze the combined impact of LULCC and CC on the regionally endemic species Melanophryniscus sanmartini Klappenbach, 1968. This species is currently categorized as near threatened by the IUCN, and previous studies suggest negative effects of projected changes in climate. Using maximum entropy methods we modeled the effects of CC on the current and mid-century distribution of M. sanmartini under two IPCC scenarios - A2 (severe) and B2 (moderate). The effects of LULCC were studied by superimposing the potential distribution with current land use, while future distribution models were evaluated under the scenario of maximum expansion of soybean and afforestation in Uruguay. The results suggest that M. sanmartini is distributed in eastern Uruguay and the south of Brazil, mainly related to hilly and grasslands systems. Currently more than 10% of this species' distribution is superimposed by agricultural crops and exotic forest plantations. Contrasting with a recent modelling study our models suggest an expansion of the distribution of M. sanmartini by mid-century under both climate scenarios. However, despite the rise in climatically suitable areas for the species in the future, LULCC projections indicate that the proportion of modified habitats will occupy up to 25% of the distribution of M. sanmartini. Future change in climate conditions could represent an opportunity for M. sanmartini, but management measures are needed to mitigate the effects of habitat modification in order to ensure its survival and allow the eventual expansion of its distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coupled carbon/climate models are predicting changes in Amazon carbon and water cycles for the near future, with conversion of forest into savanna-like vegetation. However, empirical data to support these models are still scarce for Amazon. Facing this scenario, we investigated whether conservation status and changes in rainfall regime have influenced the forest-savanna mosaic over 20 years, from 1986 to 2006, in a transitional area in Northern Amazonia. By applying a spectral linear mixture model to a Landsat-5-TM time series, we identified protected savanna enclaves within a strictly protected nature reserve (Maracá Ecological Station - MES) and non-protected forest islands at its outskirts and compared their areas among 1986/1994/2006. The protected savanna enclaves decreased 26% in the 20-years period at an average rate of 0.131 ha year-1, with a greater reduction rate observed during times of higher precipitation, whereas the non-protected forest islands remained stable throughout the period of study, balancing the encroachment of forests into the savanna during humid periods and savannization during reduced rainfall periods. Thus, keeping favorable climate conditions, the MES conservation status would continue to favor the forest encroachment upon savanna, while the non-protected outskirt areas would remain resilient to disturbance regimes. However, if the increases in the frequency of dry periods predicted by climate models for this region are confirmed, future changes in extension and directions of forest limits will be affected, disrupting ecological services as carbon storage and the maintenance of local biodiversity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Bananal Island is regarded the largest fluvial island in the world, bounded by Araguaia and Javaés rivers, being located in southwest of Tocantins. The objectives of this work were to provide information about the vegetational changes that occurred at the Bananal Island, in order to contribute to the understanding the dynamics of past and current savanna and areas of ecotones with forests. Thus, a sedimentary core collected from a small lake at the Bananal Island plain was submitted to pollen and radiocarbon dating analyses. The results showed that the last millennium was dominated by forest reflecting a wet climate. At the beginning of the record (920-770 yr cal BP) the wet climate and high rainfall produced flooding during long rainy seasons that maintained the Javaés River connected to the studied lake, and hence, this environment was marked by the presence of a homogenous forest rich in Moraceae/Urticaceae, due to flooded soils occurrence. During the following period (770-304 yr cal BP) the reduced rainfall and shortening of the rainy seasons isolated the lake from the Javaés River for long periods, which caused a diversification of the forest and gave rise to the appearance of the components of floodplain forest and marsh vegetation adapted to waterlogged soils. Since 304 years cal BP to the present day this environment remained dominated by this diverse forest and the lacustrine conditions were also similar to previous phase, with a slight increase of moisture in the last 84 years that caused the increase of Piranhea.