17 resultados para Classification image technique

em Scielo Saúde Pública - SP


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Shadow Moiré fringe patterns are level lines of equal depth generated by interference between a master grid and its shadow projected on the surface. In simplistic approach, the minimum error is about the order of the master grid pitch, that is, always larger than 0,1 mm, resulting in an experimental technique of low precision. The use of a phase shift increases the accuracy of the Shadow Moiré technique. The current work uses the phase shifting method to determine the surfaces three-dimensional shape using isothamic fringe patterns and digital image processing. The current study presents the method and applies it to images obtained by simulation for error evaluation, as well as to a buckled plate, obtaining excellent results. The method hands itself particularly useful to decrease the errors in the interpretation of the Moiré fringes that can adversely affect the calculations of displacements in pieces containing many concave and convex regions in relatively small areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondônia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearson's correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This was a descriptive, retrospective study, with a quantitative method, with the aim of analyzing the nursing diagnoses contained in the records of children of 0 to 36 months of age who attended infant health nursing consults. A documentary analysis and the cross-mapping technique were used. One hundred eighty-eight different nursing diagnoses were encountered, of which 33 (58.9%) corresponded to diagnoses contained in the Nomenclature of Nursing Diagnoses and Interventions and 23 (41.1%) were derived from ICNP® Version 1.0. Of the 56 nursing diagnoses, 43 (76.8%) were considered to be deviations from normalcy. It was concluded that the infant health nursing consults enabled the identification of situations of normalcy and abnormality, with an emphasis on the diagnoses of deviations from normalcy. Standardized language favors nursing documentation, contributing to the care of the patient and facilitating communication between nurses and other health professionals.


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Considering that information from soil reflectance spectra is underutilized in soil classification, this paper aimed to evaluate the relationship of soil physical, chemical properties and their spectra, to identify spectral patterns for soil classes, evaluate the use of numerical classification of profiles combined with spectral data for soil classification. We studied 20 soil profiles from the municipality of Piracicaba, State of São Paulo, Brazil, which were morphologically described and classified up to the 3rd category level of the Brazilian Soil Classification System (SiBCS). Subsequently, soil samples were collected from pedogenetic horizons and subjected to soil particle size and chemical analyses. Their Vis-NIR spectra were measured, followed by principal component analysis. Pearson's linear correlation coefficients were determined among the four principal components and the following soil properties: pH, organic matter, P, K, Ca, Mg, Al, CEC, base saturation, and Al saturation. We also carried out interpretation of the first three principal components and their relationships with soil classes defined by SiBCS. In addition, numerical classification of the profiles based on the OSACA algorithm was performed using spectral data as a basis. We determined the Normalized Mutual Information (NMI) and Uncertainty Coefficient (U). These coefficients represent the similarity between the numerical classification and the soil classes from SiBCS. Pearson's correlation coefficients were significant for the principal components when compared to sand, clay, Al content and soil color. Visual analysis of the principal component scores showed differences in the spectral behavior of the soil classes, mainly among Argissolos and the others soils. The NMI and U similarity coefficients showed values of 0.74 and 0.64, respectively, suggesting good similarity between the numerical and SiBCS classes. For example, numerical classification correctly distinguished Argissolos from Latossolos and Nitossolos. However, this mathematical technique was not able to distinguish Latossolos from Nitossolos Vermelho férricos, but the Cambissolos were well differentiated from other soil classes. The numerical technique proved to be effective and applicable to the soil classification process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study aimed to propose methods to identify croplands cultivated with winter cereals in the northern region of Rio Grande do Sul State, Brazil. Thus, temporal profiles of Normalized Difference Vegetation Index (NDVI) from MODIS sensor, from April to December of the 2000 to 2008, were analyzed. Firstly, crop masks were elaborated by subtracting the minimum NDVI image (April to May) from the maximum NDVI image (June to October). Then, an unsupervised classification of NDVI images was carried out (Isodata), considering the crop mask areas. According to the results, crop masks allowed the identification of pixels with greatest green biomass variation. This variation might be associated or not with winter cereals areas established to grain production. The unsupervised classification generated classes in which NDVI temporal profiles were associated with water bodies, pastures, winter cereals for grain production and for soil cover. Temporal NDVI profiles of the class winter cereals for grain production were in agree with crop patterns in the region (developmental stage, management standard and sowing dates). Therefore, unsupervised classification based on crop masks allows distinguishing and monitoring winter cereal crops, which were similar in terms of morphology and phenology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study compares the precision of three image classification methods, two of remote sensing and one of geostatistics applied to areas cultivated with citrus. The 5,296.52ha area of study is located in the city of Araraquara - central region of the state of São Paulo (SP), Brazil. The multispectral image from the CCD/CBERS-2B satellite was acquired in 2009 and processed through the Geographic Information System (GIS) SPRING. Three classification methods were used, one unsupervised (Cluster), and two supervised (Indicator Kriging/IK and Maximum Likelihood/Maxver), in addition to the screen classification taken as field checking.. Reliability of classifications was evaluated by Kappa index. In accordance with the Kappa index, the Indicator kriging method obtained the highest degree of reliability for bands 2 and 4. Moreover the Cluster method applied to band 2 (green) was the best quality classification between all the methods. Indicator Kriging was the classifier that presented the citrus total area closest to the field check estimated by -3.01%, whereas Maxver overestimated the total citrus area by 42.94%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some basic topics concerned with the extraction of textural and geometric information from cell nucleus images as well as description and characterization of chromatin supraorganization and consequent classification of nuclear phenotypes are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In vivo proton magnetic resonance spectroscopy (¹H-MRS) is a technique capable of assessing biochemical content and pathways in normal and pathological tissue. In the brain, ¹H-MRS complements the information given by magnetic resonance images. The main goal of the present study was to assess the accuracy of ¹H-MRS for the classification of brain tumors in a pilot study comparing results obtained by manual and semi-automatic quantification of metabolites. In vivo single-voxel ¹H-MRS was performed in 24 control subjects and 26 patients with brain neoplasms that included meningiomas, high-grade neuroglial tumors and pilocytic astrocytomas. Seven metabolite groups (lactate, lipids, N-acetyl-aspartate, glutamate and glutamine group, total creatine, total choline, myo-inositol) were evaluated in all spectra by two methods: a manual one consisting of integration of manually defined peak areas, and the advanced method for accurate, robust and efficient spectral fitting (AMARES), a semi-automatic quantification method implemented in the jMRUI software. Statistical methods included discriminant analysis and the leave-one-out cross-validation method. Both manual and semi-automatic analyses detected differences in metabolite content between tumor groups and controls (P < 0.005). The classification accuracy obtained with the manual method was 75% for high-grade neuroglial tumors, 55% for meningiomas and 56% for pilocytic astrocytomas, while for the semi-automatic method it was 78, 70, and 98%, respectively. Both methods classified all control subjects correctly. The study demonstrated that ¹H-MRS accurately differentiated normal from tumoral brain tissue and confirmed the superiority of the semi-automatic quantification method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT The objective of this work was to study the distribution of values of the coefficient of variation (CV) in the experiments of papaya crop (Carica papaya L.) by proposing ranges to guide researchers in their evaluation for different characters in the field. The data used in this study were obtained by bibliographical review in Brazilian journals, dissertations and thesis. This study considered the following characters: diameter of the stalk, insertion height of the first fruit, plant height, number of fruits per plant, fruit biomass, fruit length, equatorial diameter of the fruit, pulp thickness, fruit firmness, soluble solids and internal cavity diameter, from which, value ranges were obtained for the CV values for each character, based on the methodology proposed by Garcia, Costa and by the standard classification of Pimentel-Gomes. The results obtained in this study indicated that ranges of CV values were different among various characters, presenting a large variation, which justifies the necessity of using specific evaluation range for each character. In addition, the use of classification ranges obtained from methodology of Costa is recommended.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: The correct identification of the underlying cause of death and its precise assignment to a code from the International Classification of Diseases are important issues to achieve accurate and universally comparable mortality statistics These factors, among other ones, led to the development of computer software programs in order to automatically identify the underlying cause of death. OBJECTIVE: This work was conceived to compare the underlying causes of death processed respectively by the Automated Classification of Medical Entities (ACME) and the "Sistema de Seleção de Causa Básica de Morte" (SCB) programs. MATERIAL AND METHOD: The comparative evaluation of the underlying causes of death processed respectively by ACME and SCB systems was performed using the input data file for the ACME system that included deaths which occurred in the State of S. Paulo from June to December 1993, totalling 129,104 records of the corresponding death certificates. The differences between underlying causes selected by ACME and SCB systems verified in the month of June, when considered as SCB errors, were used to correct and improve SCB processing logic and its decision tables. RESULTS: The processing of the underlying causes of death by the ACME and SCB systems resulted in 3,278 differences, that were analysed and ascribed to lack of answer to dialogue boxes during processing, to deaths due to human immunodeficiency virus [HIV] disease for which there was no specific provision in any of the systems, to coding and/or keying errors and to actual problems. The detailed analysis of these latter disclosed that the majority of the underlying causes of death processed by the SCB system were correct and that different interpretations were given to the mortality coding rules by each system, that some particular problems could not be explained with the available documentation and that a smaller proportion of problems were identified as SCB errors. CONCLUSION: These results, disclosing a very low and insignificant number of actual problems, guarantees the use of the version of the SCB system for the Ninth Revision of the International Classification of Diseases and assures the continuity of the work which is being undertaken for the Tenth Revision version.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To develop a Charlson-like comorbidity index based on clinical conditions and weights of the original Charlson comorbidity index. METHODS: Clinical conditions and weights were adapted from the International Classification of Diseases, 10th revision and applied to a single hospital admission diagnosis. The study included 3,733 patients over 18 years of age who were admitted to a public general hospital in the city of Rio de Janeiro, southeast Brazil, between Jan 2001 and Jan 2003. The index distribution was analyzed by gender, type of admission, blood transfusion, intensive care unit admission, age and length of hospital stay. Two logistic regression models were developed to predict in-hospital mortality including: a) the aforementioned variables and the risk-adjustment index (full model); and b) the risk-adjustment index and patient's age (reduced model). RESULTS: Of all patients analyzed, 22.3% had risk scores >1, and their mortality rate was 4.5% (66.0% of them had scores >1). Except for gender and type of admission, all variables were retained in the logistic regression. The models including the developed risk index had an area under the receiver operating characteristic curve of 0.86 (full model), and 0.76 (reduced model). Each unit increase in the risk score was associated with nearly 50% increase in the odds of in-hospital death. CONCLUSIONS: The risk index developed was able to effectively discriminate the odds of in-hospital death which can be useful when limited information is available from hospital databases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To validate a new symphysis-fundal curve for screening fetal growth deviations and to compare its performance with the standard curve adopted by the Brazilian Ministry of Health. METHODS: Observational study including a total of 753 low-risk pregnant women with gestational age above 27 weeks between March to October 2006 in the city of João Pessoa, Northeastern Brazil. Symphisys-fundal was measured using a standard technique recommended by the Brazilian Ministry of Health. Estimated fetal weight assessed through ultrasound using the Brazilian fetal weight chart for gestational age was the gold standard. A subsample of 122 women with neonatal weight measurements was taken up to seven days after estimated fetal weight measurements and symphisys-fundal classification was compared with Lubchenco growth reference curve as gold standard. Sensitivity, specificity, positive and negative predictive values were calculated. The McNemar χ2 test was used for comparing sensitivity of both symphisys-fundal curves studied. RESULTS: The sensitivity of the new curve for detecting small for gestational age fetuses was 51.6% while that of the Brazilian Ministry of Health reference curve was significantly lower (12.5%). In the subsample using neonatal weight as gold standard, the sensitivity of the new reference curve was 85.7% while that of the Brazilian Ministry of Health was 42.9% for detecting small for gestational age. CONCLUSIONS: The diagnostic performance of the new curve for detecting small for gestational age fetuses was significantly higher than that of the Brazilian Ministry of Health reference curve.