5 resultados para Classificadores

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

RESUMO Este estudo tem por propósito comparar conceitual e metodologicamente cinco classificadores para a estratificação socioeconômica da sociedade brasileira e mensurar os trade-offs de erros de classificação entre eles. Com base nos algoritmos de classificação de cada critério, classificamos os 55.970 domicílios que compõem a amostra representativa da pesquisa de orçamentos familiares (POF), realizada pelo Instituto Brasileiro de Geografia e Estatística (IBGE). Os resultados obtidos permitem afirmar que o classificador de máxima verossimilhança foi o que apresentou a melhor performance em explicar o nível de consumo das famílias brasileiras por estrato socioeconômico, seguido do classificador bayesiano adaptável, da Associação Brasileira de Empresas de Pesquisa (ABEP) simplificado, do ABEP antigo e da Secretaria de Assuntos Estratégicos (SAE). Os três primeiros classificadores estão sustentados no conceito da renda permanente/riqueza do domicílio, incorporando os dois primeiros uma importante inovação: classificar um domicílio levando em conta sua localização geográfica e a composição familiar. Esses novos classificadores possibilitam aos pesquisadores e gestores de marketing segmentar e estudar mercados baseados em critério válido, fidedigno e confiável de estratificação socioeconômica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resumo: O objetivo deste trabalho foi avaliar o desempenho dos classificadores digitais SVM e K-NN para a classificação orientada a objeto em imagens Landsat-8, aplicados ao mapeamento de uso e cobertura do solo da Alta Bacia do Rio Piracicaba-Jaguari, MG. A etapa de pré-processamento contou com a conversão radiométrica e a minimização dos efeitos atmosféricos. Em seguida, foi feita a fusão das bandas multiespectrais (30 m) com a banda pancromática (15 m). Com base em composições RGB e inspeções de campo, definiram-se 15 classes de uso e cobertura do solo. Para a segmentação de bordas, aplicaram-se os limiares 10 e 60 para as configurações de segmentação e união no aplicativo ENVI. A classificação foi feita usando SVM e K-NN. Ambos os classificadores apresentaram elevados valores de índice Kappa (k): 0,92 para SVM e 0,86 para K-NN, significativamente diferentes entre si a 95% de probabilidade. Uma significativa melhoria foi observada para SVM, na classificação correta de diferentes tipologias florestais. A classificação orientada a objetos é amplamente aplicada em imagens de alta resolução espacial; no entanto, os resultados obtidos no presente trabalho mostram a robustez do método também para imagens de média resolução espacial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o objetivo de comparar dois classificadores de imagens para a estimativa da cobertura vegetal do solo, foram avaliadas as coberturas proporcionadas pela semeadura de leguminosas e de gramíneas, sob diferentes espaçamentos, preparo do solo e condições de céu com e sem nuvens. O experimento foi conduzido em quatro parcelas experimentais de perda de solo, com 22 m x 3,5 m, instaladas em um Argissolo Vermelho-Amarelo. Os tratamentos consistiram: a) mucuna-cinza (Mucuna pruriens) em nível; b) crotalária (Crotalaria juncea) em sulcos dispostos em nível; c) milho (Zea mays L.) em sulcos dispostos em nível, e d) milho semeado no sentido do declive. Foram tomadas fotografias das parcelas dos 15 aos 85 dias após a semeadura para posterior análise, utilizando o Sistema Integrado para Análise de Raízes e Cobertura do Solo (SIARCS) e um algoritmo baseado na emissividade das bandas do verde e do vermelho (SEROBIN). A maior cobertura do solo foi obtida na parcela cultivada com crotálaria (85,8%), a qual também foi alcançada em menor tempo (56 dias após semeadura). Por outro lado, as menores coberturas foram proporcionadas pelos tratamentos milho em nível e milho morro abaixo (38,6 e 35,2%, respectivamente). As exatidões globais foram de 0,96 e 0,92, para as classificações realizadas com os programas SIARCS e SEROBIN, respectivamente, não havendo, no entanto, diferença estatística entre os dois classificadores utilizados, de acordo com o teste Z aplicado, a 5% de probabilidade.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O presente trabalho tem como objetivo analisar o potencial de imagens SAR polarimétricas do sensor TerraSAR-X, no modo StripMap, para mapear o uso e cobertura da terra na região sudoeste da Amazônia brasileira. No procedimento metodológico imagens de amplitude nas polarizações A HH e A VV, Aclassificadores: um baseado nas funções estatísticas de máxima verossimilhança (MAXVER); e outro, o método contextual (Context). Os resultados temáticos dessas classificações foram avaliados através da matriz de confusão e pelo índice Kappa. De forma sintetizada pode-se afirmar que as componentes A

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O ajuste da adubação nitrogenada é um tema que suscita preocupações econômicas e ambientais em todo o mundo. Isso decorre da elevada resposta das culturas, especialmente gramíneas, ao nitrogênio e da falta de métodos adequados de quantificação de sua disponibilidade no solo. Com o objetivo de avaliar a discriminação de três estágios nutricionais na cultura do trigo, foram utilizadas imagens digitais e um medidor portátil de clorofila (SPAD -502). Os dados foram coletados em três épocas (8; 14 e 20 dias após a adubação nitrogenada em cobertura - DAA), em parcelas de trigo submetidas a três doses de N (0; 30 e 60 kg ha-1). As imagens foram processadas para desenvolvimento dos classificadores multivariados, utilizando-se de nove índices espectrais com as combinações dos valores médios dos "pixels". Os dados de clorofila e N foliar foram utilizados para desenvolver classificadores univariados. Verificou-se que o sistema de visão artificial foi mais eficiente que o SPAD aos 8 DAA. Aos 14 e 20 DAA, a classificação univariada com os dados SPAD foi equivalente aos classificadores com dados de imagens. Com a utilização das imagens digitais, foi possível discriminar os estágios nutricionais oito dias após a primeira adubação nitrogenada em cobertura.