3 resultados para Christians in the Roman empire.

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our knowledge regarding the anatomophysiology of the cardiovascular system (CVS) has progressed since the fourth millennium BC. In Egypt (3500 BC), it was believed that a set of channels are interconnected to the heart, transporting air, urine, air, blood, and the soul. One thousand years later, the heart was established as the center of the CVS by the Hippocratic Corpus in the medical school of Kos, and some of the CVS anatomical characteristics were defined. The CVS was known to transport blood via the right ventricle through veins and the pneuma via the left ventricle through arteries. Two hundred years later, in Alexandria, following the development of human anatomical dissection, Herophilus discovered that arteries were 6 times thicker than veins, and Erasistratus described the semilunar valves, emphasizing that arteries were filled with blood when ventricles were empty. Further, 200 years later, Galen demonstrated that arteries contained blood and not air. With the decline of the Roman Empire, Greco-Roman medical knowledge about the CVS was preserved in Persia, and later in Islam where, Ibn Nafis inaccurately described pulmonary circulation. The resurgence of dissection of the human body in Europe in the 14th century was associated with the revival of the knowledge pertaining to the CVS. The main findings were the description of pulmonary circulation by Servetus, the anatomical discoveries of Vesalius, the demonstration of pulmonary circulation by Colombo, and the discovery of valves in veins by Fabricius. Following these developments, Harvey described blood circulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the effects of slow (–18 °C) and fast freezing (liquid nitrogen) of pork meat, and the use of exudate released upon thawing, on the physicochemical, color, rheological, microbiological, histological, and sensory characteristics of cooked ham. The meat samples were frozen at –18 °C and thawed after 22 weeks for the production of cooked ham. No significant difference was observed regarding physicochemical, color and microbiological parameters or in sensory acceptance. The hardness and chewiness parameters showed significant differences when compared to the control sample (ham made from chilled meat). Light microscopy of cooked ham samples showed that changes in the tissues were caused by freezing and thawing the meat. The effect of exudate was significant on the sodium content and compression force parameters, but this difference was not perceived in the sensory analysis, confirming that frozen pork meat can be used to produce cooked ham without loss of quality.