65 resultados para Chick Embryonic Kinase
em Scielo Saúde Pública - SP
Resumo:
In the present study, we report that low concentrations of the glutamate ionotropic agonist kainate decreased the turnover of [3H]-phosphoinositides ([3H]-InsPs) induced by muscarinic receptors in the chick embryonic retina. When 100 µM carbachol was used, the estimated IC50 value for kainate was 0.2 µM and the maximal inhibition of ~50% was obtained with 1 µM or higher concentrations of the glutamatergic agonist. Our data also show that veratridine, a neurotoxin that increases the permeability of voltage-sensitive sodium channels, had no effect on [3H]-InsPs levels of the embryonic retina. However, 50 µM veratridine, but not 50 mM KCl, inhibited ~65% of the retinal response to carbachol. While carbachol increased [3H]-InsPs levels from 241.2 ± 38.0 to 2044.5 ± 299.9 cpm/mg protein, retinal response decreased to 861.6 ± 113.9 cpm/mg protein when tissues were incubated with carbachol plus veratridine. These results suggest that the accumulation of phosphoinositides induced by activation of muscarinic receptors can be inhibited by the influx of Na+ ions triggered by activation of kainate receptors or opening of voltage-sensitive sodium channels in the chick embryonic retina.
Resumo:
One of the challenges of the postgenomic era is characterizing the function and regulation of specific genes. For various reasons, the early chick embryo can easily be adopted as an in vivo assay of gene function and regulation. The embryos are robust, accessible, easily manipulated, and maintained in the laboratory. Genomic resources centered on vertebrate organisms increase daily. As a consequence of optimization of gene transfer protocols by electroporation, the chick embryo will probably become increasingly popular for reverse genetic analysis. The challenge of establishing chick embryonic electroporation might seem insurmountable to those who are unfamiliar with experimental embryological methods. To minimize the cost, time, and effort required to establish a chick electroporation assay method, we describe and illustrate in great detail the procedures involved in building a low-cost electroporation setup and the basic steps of electroporation.
Resumo:
The precise nature of hormones and growth factors directly responsible for cartilage maturation is still largely unclear. Since longitudinal bone growth occurs through endochondral bone formation, excess or deficiency of most hormones and growth factors strongly influences final adult height. The structure and composition of the cartilaginous extracellular matrix have a critical role in regulating the behavior of growth plate chondrocytes. Therefore, the maintenance of the three-dimensional cell-matrix interaction is necessary to study the influence of individual signaling molecules on chondrogenesis, cartilage maturation and calcification. To investigate the effects of insulin on both proliferation and induction of hypertrophy in chondrocytes in vitro we used high-density micromass cultures of chick embryonic limb mesenchymal cells. Culture medium was supplemented with 1% FCS + 60 ng/ml (0.01 µM) insulin and cultures were harvested at regular time points for later analysis. Proliferating cell nuclear antigen immunoreactivity was widely detected in insulin-treated cultures and persisted until day 21 and [³H]-thymidine uptake was highest on day 14. While apoptosis increased in control cultures as a function of culture time, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-labeled cells were markedly reduced in the presence of insulin. Type II collagen production, alkaline phosphatase activity and cell size were also lower in insulin-treated cultures. Our results indicate that under the influence of 60 ng/ml insulin, chick chondrocytes maintain their proliferative potential but do not become hypertrophic, suggesting that insulin can affect the regulation of chondrocyte maturation and hypertrophy, possibly through an antiapoptotic effect.
Resumo:
Glutamate receptors have been often associated with developmental processes. We used immunohistochemical techniques to evaluate the expression of the AMPA-type glutamate receptor (GluR) subunits in the chick optic tectum (TeO). Chick embryos from the 5th through the 20th embryonic day (E5-E20) and one-day-old (P1) chicks were used. The three types of immunoreactivity evaluated (GluR1, GluR2/3, and GluR4) had different temporal and spatial expression patterns in the several layers of the TeO. The GluR1 subunit first appeared as moderate staining on E7 and then increased on E9. The mature GluR1 pattern included intense staining only in layer 5 of the TeO. The GluR2/3 subunits presented low expression on E5, which became intense on E7. The staining for GluR2/3 changed to very intense on E14 in tectal layer 13. Staining of layer 13 neurons is the most prominent feature of GluR immunoreactivity in the adult TeO. The GluR4 subunit generally presented the lowest expression starting on E7, which was similar to the adult pattern. Some instances of transient expression of GluR subunits were observed in specific cell populations from E9 through E20. These results demonstrate a differential expression of the GluR subunits in the embryonic TeO, adding information about their possible functions in the developmental processes of the visual system.
Resumo:
Activation of NFkappaB plays a pivotal role in many cellular processes such as inflammation, proliferation and apoptosis. In Drosophila, nuclear translocation of the NFkappaB-related transcription factor Dorsal is spatially regulated in order to subdivide the embryo into three primary dorsal-ventral (DV) domains: the ventral presumptive mesoderm, the lateral neuroectoderm and the dorsal ectoderm. Ventral activation of the Toll receptor induces degradation of the IkappaB-related inhibitor Cactus, liberating Dorsal for nuclear translocation. In addition, other pathways have been suggested to regulate Dorsal. Signaling through the maternal BMP member Decapentaplegic (Dpp) inhibits Dorsal translocation along a pathway parallel to and independent of Toll. In the present study, we show for the first time that the maternal JAK/STAT pathway also regulates embryonic DV patterning. Null alleles of loci coding for elements of the JAK/STAT pathway, hopscotch (hop), marelle (mrl) and zimp (zimp), modify zygotic expression along the DV axis. Genetic analysis suggests that the JAK kinase Hop, most similar to vertebrate JAK2, may modify signals downstream of Dpp. In addition, an activated form of Hop results in increased levels of Cactus and Dorsal proteins, modifying the Dorsal/Cactus ratio and consequently DV patterning. These results indicate that different maternal signals mediated by the Toll, BMP and JAK/STAT pathways may converge to regulate NFkappaB activity in Drosophila.
Resumo:
The influence of melatonin on the developmental pattern of functional nicotinic acetylcholine receptors was investigated in embryonic 8-day-old chick retinal cells in culture. The functional response to acetylcholine was measured in cultured retina cells by microphysiometry. The maximal functional response to acetylcholine increased 2.7 times between the 4th and 5th day in vitro (DIV4, DIV5), while the Bmax value for [125I]-alpha-bungarotoxin was reduced. Despite the presence of alpha8-like immunoreactivity at DIV4, functional responses mediated by alpha-bungarotoxin-sensitive nicotinic acetylcholine receptors were observed only at DIV5. Mecamylamine (100 µM) was essentially without effect at DIV4 and DIV5, while dihydro-ß-erythroidine (10-100 µM) blocked the response to acetylcholine (3.0 nM-2.0 µM) only at DIV4, with no effect at DIV5. Inhibition of melatonin receptors with the antagonist luzindole, or melatonin synthesis by stimulation of D4 dopamine receptors blocked the appearance of the alpha-bungarotoxin-sensitive response at DIV5. Therefore, alpha-bungarotoxin-sensitive receptors were expressed in retinal cells as early as at DIV4, but they reacted to acetylcholine only after DIV5. The development of an alpha-bungarotoxin-sensitive response is dependent on the production of melatonin by the retinal culture. Melatonin, which is produced in a tonic manner by this culture, and is a key hormone in the temporal organization of vertebrates, also potentiates responses mediated by alpha-bungarotoxin-sensitive receptors in rat vas deferens and cerebellum. This common pattern of action on different cell models that express alpha-bungarotoxin-sensitive receptors probably reflects a more general mechanism of regulation of these receptors.
Resumo:
The distribution, morphology and morphometry of microglial cells in the chick cerebral hemispheres from embryonic day 4 (E4) to the first neonatal day (P1) were studied by histochemical labeling with a tomato (Lycopersicon esculentum) lectin. The histochemical analysis revealed lectin-reactive cells in the nervous parenchyma on day E4. Between E4 (5.7 ± 1.35 mm length) and E17 (8.25 ± 1.2 mm length), the lectin-reactive cells were identified as ameboid microglia and observed starting from the subventricular layer, distributed throughout the mantle layer and in the proximity of the blood vessels. After day E13, the lectin-reactive cells exhibited elongated forms with small branched processes, and were considered primitive ramified microglia. Later, between E18 (5.85 ± 1.5 mm cell body length) and P1 (3.25 ± 0.6 mm cell body length), cells with more elongated branched processes were observed, constituting the ramified microglia. Our findings provide additional information on the migration and differentiation of microglial cells, whose ramified form is observed at the end of embryonic development. The present paper focused on the arrangement of microglial cells in developing cerebral hemispheres of embryonic and neonatal chicks, which are little studied in the literature. Details of morphology, morphometry and spatial distribution of microglial cells contributed to the understanding of bird and mammal central nervous system ontogeny. Furthermore, the identification and localization of microglial cells during the normal development could be used as a morphological guide for embryonic brain injury researches.
Resumo:
The retina is a highly differentiated tissue with a complex layered structure that has been extensively characterized. However, most of the previous studies focused on the histology of the central retina while little is known about the cellular composition, organization and function of the marginal retina. Recent research has identified a subpopulation of multipotential progenitor cells in the marginal regions of the retina, closest to the ciliary body ("ciliary marginal zone"). These cells are capable of differentiation in response to an appropriate stimulus. Thus, it is possible that the structure and composition of the marginal retina are distinct from those of the central retina to accommodate the potential addition of newly formed neurons. To characterize the cellular profile of the chick marginal retina, we labeled it immunohistochemically for markers whose staining pattern is well established in the central retina: calbindin, calretinin, protein kinase C, and choline acetyltransferase. Calbindin was present at very low levels in the marginal retina putative photoreceptor layer. Calretinin-positive horizontal cells were also sparse close to the ciliary marginal zone. The bipolar cells in the marginal outer plexiform layer were positive for anti-protein kinase C antibodies, but the density of labeling was also decreased in relation to the central retina. In contrast, the marginal starburst cholinergic amacrine cell pattern was very similar to the central retina. From these data we conclude that the structure of the marginal retina is significantly different from that of the central retina. In particular, the expression of late retina markers in the marginal retina decreased in comparison to the central retina.
Resumo:
Two major stress-activated protein kinases are the p38 mitogen-activated protein kinase (MAPK) and the c-Jun amino terminal kinase (JNK). p38 and JNK are widely expressed in different cell types in various tissues and can be activated by a diverse range of stimuli. Signaling through p38 and JNK is critical for embryonic development. In adult kidney, p38 and JNK signaling is evident in a restricted pattern suggesting a normal physiological role. Marked activation of both p38 and JNK pathways occurs in human renal disease, including glomerulonephritis, diabetic nephropathy and acute renal failure. Administration of small molecule inhibitors of p38 and JNK has been shown to provide protection from renal injury in different types of experimental kidney disease through inhibition of renal inflammation, fibrosis, and apoptosis. In particular, a role for JNK signaling has been identified in macrophage activation resulting in up-regulation of pro-inflammatory mediators and the induction of renal injury. The ability to provide renal protection by blocking either p38 or JNK indicates a lack of redundancy for these two signaling pathways despite their activation by common stimuli. Therefore, the stress-activated protein kinases, p38 and JNK, are promising candidates for therapeutic intervention in human renal diseases.
Resumo:
PURPOSE: Congenital venous malformations of the lower limbs represent a particular challenge for the vascular surgeon. Persistence of fetal veins is a rare malformation, and the most common is the persistence of the lateral marginal vein usually observed in patients with Klippel-Trenaunnay Syndrome. The persistence of this embryonic vein as an isolated venous malformation without the other characteristics of the Klippel-Trenaunnay Syndrome has not yet been reported. This paper describes two cases. METHODS: Two patients, a 17-year-old male patient and a 16-year-old female, have had since their birth a large venous trunk in the lateral aspect of the right leg and thigh. The limbs underwent duplex scanning and phlebography. The surgical removal of the lateral marginal vein was performed. RESULTS: Surgical treatment resulted in very good functional and aesthetic results. Follow-up at 26 months showed no evidence of varicose vein recurrence. CONCLUSIONS: To achieve good results, surgical intervention may be indicated in cases of orthopedic deformity, hemorrhage, symptomatic, and unaesthetic lesions.
Resumo:
Treatment of cancer using gene therapy is based on adding a property to the cell leading to its elimination. One possibility is the use of suicide genes that code for enzymes that transform a pro-drug into a cytotoxic product. The most extensively used is the herpes simplex virus thymidine kinase (TK) gene, followed by administration of the antiviral drug ganciclovir (GCV). The choice of the promoter to drive the transcription of a transgene is one of the determinants of a given transfer vector usefulness, as different promoters show different efficiencies depending on the target cell type. In the experiments presented here, we report the construction of a recombinant adenovirus carrying TK gene (Ad-TK) driven by three strong promoters (P CMV IE, SV40 and EN1) and its effectiveness in two cell types. Human HeLa and mouse CCR2 tumor cells were transduced with Ad-TK and efficiently killed after addition of GCV. We could detect two sizes of transcripts of TK gene, one derived from the close together P CMV IE/SV40 promoters and the other from the 1.5 Kb downstream EN1 promoter. The relative amounts of these transcripts were different in each cell type thus indicating a higher flexibility of this system.
Resumo:
Temperature influence on the embryonic development of Anopheles aquasalis and An. albitarsis was investigated. At 26ºC, 75% and 60% of respectively An. aquasalis and An. albitarsis eggs hatched, with one peak of eclosion, between the 2nd and 3rd day after oviposition. At 20 ± 2ºC, around 66-70% of An. aquasalis eggs hatched, with one eclosion peak, on the 5th day. On the other hand, An. albitarsis eclosion at 21 ± 2ºC decreased to 10-22%, with two eclosion peaks, on the 4th-5th day and on the 9th-12th day. These data indicate a stronger temperature influence over An.albitarsis than over An. aquasalis embryos.
Resumo:
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.