5 resultados para Ceramic dielectric
em Scielo Saúde Pública - SP
Resumo:
Several archaeological black earth (ABE) sites occur in the Amazon region. They contain fragments of ceramic artifacts, which are very important for the archaeological purpose. In order to improve the archaeological study in the region we carried out a detailed mineralogical and chemical study of the fragments of ceramic artifacts found in the two ABE sites of Cachoeira-Porteira, in the Lower Amazon Region. Their ceramics comprise the following tempers: cauixi, cariapé, sand, sand +feldspars, crushed ceramic and so on and are composed of quartz, clay equivalent material (mainly burned kaolinite), feldspars, hematite, goethite, maghemite, phosphates, anatase, and minerals of Mn and Ba. Cauixi and cariapé, siliceous organic compounds, were found too. The mineralogical composition and the morphology of their grains indicate a saprolite (clayey material rich on quartz) derived from fine-grained felsic igneous rocks or sedimentary rocks as source material for ceramic artifacts, where silica-rich components such cauixi, cariapé and/or sand (feldspar and rock fragments) were intentionally added to them. The high content of (Al,Fe)-phosphates, amorphous to low crystalline, must be product of the contact between the clayey matrix of pottery wall and the hot aqueous solution formed during the daily cooking of animal foods (main source of phosphor). The phosphate crystallization took place during the discharge of the potteries put together with waste of organic material from animal and vegetal origin, and leaving to the formation of the ABE-soil profile.
Resumo:
This paper carried out a chemical investigation of archaeological ceramic artifacts found in archaeological sites with Black Earth (ABE) in the Lower Amazon Region at Cachoeira-Porteira, State of Pará, Brazil. The ceramic artifacts, mostly of daily use, belong to Konduri culture (from 900 to 400 years BP). They are constituted of SiO2, Al2O3, Fe2O3, Na2O and P2O5; SiO2 and Al2O3 together add up to 80 % and indicate influence of acid rocks, transformed into clay minerals basically kaolinite. The relative high contents of P2O5 (2.37 % in average) come out as (Al,Fe)-phosphate, an uncommon fact in primitive red ceramics, but found in some roman and egyptian archaeological sites. The contents of the trace elements are similar or below the Earth's crust average. This chemical composition (except P2O5) detaches saprolite material derived acid igneous rocks or sedimentary ones as the main raw material of the ceramics. The contents of K, Na and Ca represent the feldspars and rock fragments possibly introduced into saprolitic groundmass, indicated by mineralogical studies. The presence of cauixi and cariapé as well as quartz sand was confirmed by optical microscope, SEM analyses and by the high silica contents of ceramic fragments. Phosphorus was possibly incorporated into groundmass during cooking of foods, and ABE soil profile formation developed on yellow Latosols. The raw materials and its tempers (cauixi, or cariapé, feldspar, crushed rocks, old ceramic artifacts and quartz fragments) are found close to the sites and therefore and certainly came from them.
Resumo:
Soil moisture is the property which most greatly influences the soil dielectric constant, which is also influenced by soil mineralogy. The aim of this study was to determine mathematical models for soil moisture and the dielectric constant (Ka) for a Hapludalf, two clayey Hapludox and a very clayey Hapludox and test the reliability of universal models, such as those proposed by Topp and Ledieu and their co-workers in the 80's, and specific models to estimate soil moisture with a TDR. Soil samples were collected from the 0 to 0.30 m layer, sieved through a mesh of 0.002 m diameter and packed in PVC cylinders with a 0.1 m diameter and 0.3 m height. Seven samples of each soil class were saturated by capillarity and a probe composed of two rods was inserted in each one of them. Moisture readings began with the saturated soil and concluded when the soil was near permanent wilting point. In each step, the samples were weighed on a precision scale to calculate volumetric moisture. Linear and polynomial models were adjusted for each soil class and for all soils together between soil moisture and the dielectric constant. Accuracy of the models was evaluated by the coefficient of determination, the standard error of estimate and the 1:1 line. The models proposed by Topp and Ledieu and their co-workers were not adequate for estimating the moisture in the soil classes studied. The adjusted linear and polynomial models for the entire set of data of the four soil classes did not have sufficient accuracy for estimating soil moisture. The greater the soil clay and Fe oxide content, the greater the dielectric constant of the medium for a given volumetric moisture. The specific models, θ = 0.40283 - 0.04231 Ka + 0.00194 Ka² - 0.000022 Ka³ (Hapludox) θ = 0.01971 + 0.02902 Ka - 0.00086 Ka² + 0.000012 Ka³ (Hapludox -PF), θ = 0.01692 - 0.00507 Ka (Hapludalf) and θ = 0.08471 + 0.01145 Ka (Hapludox-CA), show greater accuracy and reliability for estimating soil moisture in the soil classes studied.
Resumo:
The complex permittivity of films of polyether ether ketone (PEEK) has been investigated over a wide range of frequency. There is no relaxation peak in the range of 1Hz to 10(5) Hz but in the low-frequency side (10-4 Hz) there is an evidence of a peak that also can be observed by thermally stimulated discharge current measurements. That peak is related with the glass transition temperature (Tg) of the polymer. The activation energy of the relaxation was found to be 0.44 eV, similar to that of several synthetic polymers. Space charges are important in the conduction mechanism as shown by discharging transient.
Resumo:
Pure and Fe(III)-doped TiO2 suspensions were prepared by the sol gel method with the use of titanium isopropoxide (Ti(OPri)4) as precursor material. The properties of doped materials were compared to TiO2 properties based on the characterization by thermal analysis (TG-DTA and DSC), X-ray powder diffractometry and spectroscopy measurements (FTIR). Both undoped and doped TiO2 suspensions were used to coat metallic substrate as a mean to make thin-film electrodes. Thermal treatment of the precursors at 400ºC for 2 h in air resulted in the formation of nanocrystalline anatase TiO2. The thin-film electrodes were tested with respect to their photocatalytic performance for degradation of a textile dye in aqueous solution. The plain TiO2 remains as the best catalyst at the conditions used in this report.