3 resultados para Celestial mechanics--Early works to 1800

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prospectively evaluated the effects of positive end-expiratory pressure (PEEP) on the respiratory mechanical properties and hemodynamics of 10 postoperative adult cardiac patients undergoing mechanical ventilation while still anesthetized and paralyzed. The respiratory mechanics was evaluated by the inflation inspiratory occlusion method and hemodynamics by conventional methods. Each patient was randomized to a different level of PEEP (5, 10 and 15 cmH2O), while zero end-expiratory pressure (ZEEP) was established as control. PEEP of 15-min duration was applied at 20-min intervals. The frequency dependence of resistance and the viscoelastic properties and elastance of the respiratory system were evaluated together with hemodynamic and respiratory indexes. We observed a significant decrease in total airway resistance (13.12 ± 0.79 cmH2O l-1 s-1 at ZEEP, 11.94 ± 0.55 cmH2O l-1 s-1 (P<0.0197) at 5 cmH2O of PEEP, 11.42 ± 0.71 cmH2O l-1 s-1 (P<0.0255) at 10 cmH2O of PEEP, and 10.32 ± 0.57 cmH2O l-1 s-1 (P<0.0002) at 15 cmH2O of PEEP). The elastance (Ers; cmH2O/l) was not significantly modified by PEEP from zero (23.49 ± 1.21) to 5 cmH2O (21.89 ± 0.70). However, a significant decrease (P<0.0003) at 10 cmH2O PEEP (18.86 ± 1.13), as well as (P<0.0001) at 15 cmH2O (18.41 ± 0.82) was observed after PEEP application. Volume dependence of viscoelastic properties showed a slight but not significant tendency to increase with PEEP. The significant decreases in cardiac index (l min-1 m-2) due to PEEP increments (3.90 ± 0.22 at ZEEP, 3.43 ± 0.17 (P<0.0260) at 5 cmH2O of PEEP, 3.31 ± 0.22 (P<0.0260) at 10 cmH2O of PEEP, and 3.10 ± 0.22 (P<0.0113) at 15 cmH2O of PEEP) were compensated for by an increase in arterial oxygen content owing to shunt fraction reduction (%) from 22.26 ± 2.28 at ZEEP to 11.66 ± 1.24 at PEEP of 15 cmH2O (P<0.0007). We conclude that increments in PEEP resulted in a reduction of both airway resistance and respiratory elastance. These results could reflect improvement in respiratory mechanics. However, due to possible hemodynamic instability, PEEP should be carefully applied to postoperative cardiac patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Administration of pilocarpine causes epilepsy in rats if status epilepticus (SE) is induced at an early age. To determine in detail the electrophysiological patterns of the epileptogenic activity in these animals, 46 Wistar rats, 7-17 days old, were subjected to SE induced by pilocarpine and electro-oscillograms from the cortex, hippocampus, amygdala, thalamus and hypothalamus, as well as head, rostrum and vibrissa, eye, ear and forelimb movements, were recorded 120 days later. Six control animals of the same age range did not show any signs of epilepsy. In all the rats subjected to SE, iterative spike-wave complexes (8.1 ± 0.5 Hz in frequency, 18.9 ± 9.1 s in duration) were recorded from the frontal cortex during absence fits. However, similar spike-wave discharges were always found also in the hippocampus and, less frequently, in the amygdala and in thalamic nuclei. Repetitive or single spikes were also detected in these same central structures. Clonic movements and single jerks were recorded from all the rats, either concomitantly with or independently of the spike-wave complexes and spikes. We conclude that rats made epileptic with pilocarpine develop absence seizures also occurring during paradoxical sleep, showing the characteristic spike-wave bursts in neocortical areas and also in the hippocampus. This is in contrast to the well-accepted statement that one of the main characteristics of absence-like fits in the rat is that spike-wave discharges are never recorded from the hippocampal fields.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.