4 resultados para Cdk
em Scielo Saúde Pública - SP
Resumo:
In this paper, we provide evidence that both the mRNA and protein levels of the cyclin-dependent kinase (CDK) inhibitor p21WAF1/CDK-interacting protein 1 (Cip1) increase upon infection of A431 cells with Vaccinia virus (VACV). In addition, the VACV growth factor (VGF) seems to be required for the gene expression because infection carried out with the mutant virus VACV-VGF- revealed that this strain was unable to stimulate its transcription. Our findings are also consistent with the notion that the VGF-mediated change in p21WAF1/Cip1 expression is dependent on tyrosine kinase pathway(s) and is partially dependent on mitogen-activated protein kinase/extracellular-signal regulated kinase 1/2. We believe that these pathways are biologically significant because VACV replication and dissemination was drastically affected when the infection was carried out in the presence of the relevant pharmacological inhibitors.
Resumo:
This study evaluated the relative occurrences of BK virus (BKV) and JC virus (JCV) infections in patients with chronic kidney disease (CKD). Urine samples were analysed from CKD patients and from 99 patients without CKD as a control. A total of 100 urine samples were analysed from the experimental (CKD patients) group and 99 from the control group. Following DNA extraction, polymerase chain reaction (PCR) was used to amplify a 173 bp region of the gene encoding the T antigen of the BKV and JCV. JCV and BKV infections were differentiated based on the enzymatic digestion of the amplified products using BamHI endonuclease. The results indicated that none of the patients in either group was infected with the BKV, whereas 11.1% (11/99) of the control group subjects and 4% (4/100) of the kidney patients were infected with the JCV. High levels of urea in the excreted urine, low urinary cellularity, reduced bladder washout and a delay in analysing the samples may have contributed to the low prevalence of infection. The results indicate that there is a need to increase the sensitivity of assays used to detect viruses in patients with CDK, especially given that polyomavirus infections, especially BKV, can lead to a loss of kidney function following transplantation.
Resumo:
The present work describes molecular models for the binary complexes CDK9, CDK5 and CDK1 complexed with Flavopiridol and Roscovitine. These structural models indicate that the inhibitors strongly bind to the ATP-binding pocket of CDKs and the structural comparison with the complexes CDK2:Flavopiridol and CDK2:Roscovitine correlates the structural differences with differences in inhibition of these CDKs by the inhibitors. These structures open the possibility of testing new inhibitor families, in addition to new substituents for the already known lead structures such as flavones and adenine derivatives.
Resumo:
Induction of apoptosis by tumor necrosis factor (TNF) is modulated by changes in the expression and activity of several cell cycle regulatory proteins. We examined the effects of TNF (1-100 ng/ml) and butyrolactone I (100 µM), a specific inhibitor of cyclin-dependent kinases (CDK) with high selectivity for CDK-1 and CDK-2, on three different cancer cell lines: WEHI, L929 and HeLa S3. Both compounds blocked cell growth, but only TNF induced the common events of apoptosis, i.e., chromatin condensation and ladder pattern of DNA fragmentation in these cell lines. The TNF-induced apoptosis events were increased in the presence of butyrolactone. In vitro phosphorylation assays for exogenous histone H1 and endogenous retinoblastoma protein (pRb) in the total cell lysates showed that treatment with both TNF and butyrolactone inhibited the histone H1 kinase (WEHI, L929 and HeLa) and pRb kinase (WEHI) activities of CDKs, as compared with the controls. The role of proteases in the TNF and butyrolactone-induced apoptosis was evaluated by comparing the number and expression of polypeptides in the cell lysates by gel electrophoresis. TNF and butyrolactone treatment caused the disappearance of several cellular protein bands in the region between 40-200 kDa, and the 110- 90- and 50-kDa proteins were identified as the major substrates, whose degradation was remarkably increased by the treatments. Interestingly, the loss of several cellular protein bands was associated with the marked accumulation of two proteins apparently of 60 and 70 kDa, which may be cleavage products of one or more proteins. These findings link the decrease of cyclin-dependent kinase activities to the increase of protease activities within the growth arrest and apoptosis pathways induced by TNF.