2 resultados para Carboxyphenyl-terpyridine
em Scielo Saúde Pública - SP
Resumo:
We have developed a system with two epi-illumination sources, a DC-regulated lamp for transillumination and mechanical switches for rapid shift of illumination and detection of defined areas (250-750 µm²) by fluorescence and phosphorescence videomicroscopy. The system permits investigation of standard microvascular parameters, vascular permeability as well as intra- and extravascular PO2 by phosphorescence quenching of Pd-meso-tetra (4-carboxyphenyl) porphine (PORPH). A Pechan prism was used to position a defined region over the photomultiplier and TV camera. In order to validate the system for in vivo use, in vitro tests were performed with probes at concentrations that can be found in microvascular studies. Extensive in vitro evaluations were performed by filling glass capillaries with solutions of various concentrations of FITC-dextran (diluted in blood and in saline) mixed with different amounts of PORPH. Fluorescence intensity and phosphorescence decay were determined for each mixture. FITC-dextran solutions without PORPH and PORPH solutions without FITC-dextran were used as references. Phosphorescence decay curves were relatively unaffected by the presence of FITC-dextran at all concentrations tested (0.1 µg/ml to 5 mg/ml). Likewise, fluorescence determinations were performed in the presence of PORPH (0.05 to 0.5 mg/ml). The system was successfully used to study macromolecular extravasation and PO2 in the rat mesentery circulation under controlled conditions and during ischemia-reperfusion.
Resumo:
The interaction between pulmonary ventilation (V E) and body temperature (Tb) is essential for O2 delivery to match metabolic rate under varying states of metabolic demand. Hypoxia causes hyperventilation and anapyrexia (a regulated drop in Tb), but the neurotransmitters responsible for this interaction are not well known. Since L-glutamate is released centrally in response to peripheral chemoreceptor stimulation and glutamatergic receptors are spread in the central nervous system we tested the hypothesis that central L-glutamate mediates the ventilatory and thermal responses to hypoxia. We measured V E and Tb in 40 adult male Wistar rats (270 to 300 g) before and after intracerebroventricular injection of kynurenic acid (KYN, an ionotropic glutamatergic receptor antagonist), alpha-methyl-4-carboxyphenylglycine (MCPG, a metabotropic glutamatergic receptor antagonist) or vehicle (saline), followed by a 1-h period of hypoxia (7% inspired O2) or normoxia (humidified room air). Under normoxia, KYN (N = 5) or MCPG (N = 8) treatment did not affect V E or Tb compared to saline (N = 6). KYN and MCPG injection caused a decrease in hypoxia-induced hyperventilation (595 ± 49 for KYN, N = 7 and 525 ± 84 ml kg-1 min-1 for MCPG, N = 6; P < 0.05) but did not affect anapyrexia (35.3 ± 0.2 for KYN and 34.7 ± 0.4ºC for MCPG) compared to saline (912 ± 110 ml kg-1 min-1 and 34.8 ± 0.2ºC, N = 8). We conclude that glutamatergic receptors are involved in hypoxic hyperventilation but do not affect anapyrexia, indicating that L-glutamate is not a common mediator of this interaction.