103 resultados para Carbon partitioning
em Scielo Saúde Pública - SP
Resumo:
Lamium album accumulates starch, sucrose and raffinose-family oligosaccharides (RFO) as the major products of photosynthesis. These products were measured in leaves throughout a sixteen-hour photoperiod and under various irradiance conditions. There was continuous accumulation of sucrose and starch. The rate of gas exchange was higher at 500 µEm² s-1 and 900 µEm²s-1 than at 300 µEm² s-1. The rate of photosynthesis did not decline over the sixteen-hour photoperiod, which suggested that there was no short-term feed back inhibition due to sucrose accumulation in this plant. When the products of photosynthesis were compared at the end of the photoperiod, only sucrose increased in abundance at high irradiance. The RFO pool in leaves was shown to contain raffinose, stachyose and verbascose; galactinol was also present. 14CO2 feeding demonstrated that roots and flowers were the major sinks. The middle leaves were major source leaves whilst young leaves acted as both sources and sinks.
Resumo:
ABSTRACT Sorghum arundinaceum (Desv.) Stapf is a weed that belongs to the Poaceae family and is widespread throughout Brazil. Despite the frequent occurrence, infesting cultivated areas, there is little research concerning the biology and physiology of this species. The objective of this research was to evaluate the growth, carbon partitioning and physiological characteristics of the weed Sorghum arundinaceum in greenhouse. Plants were collected at regular intervals of seven days, from 22 to 113 days after transplanting (DAT). In each sample, we determined plant height, root volume, leaf area and dry matter, and subsequently we perfomed the growth analysis, we have determined the dry matter partitioning among organs, the accumulation of dry matter, the specific leaf area, the relative growth rate and leaf weight ratio. At 36, 78 and 113 DAT, the photosynthetic and transpiration rates, stomatal conductance, CO2 concentration and chlorophyll fluorescence were evaluated. The Sorghum arundinaceum reached 1.91 in height, with slow initial growth and allocated much of the biomass in the roots. The photosynthetic rate and the maximum quantum yield of FSII are similar throughout the growth cycle. At maturity the Sorghum arundinaceum presents higher values of transpiration rate, stomatal conductance and non-photochemical quenching coefficient (NPQ).
Resumo:
In Lamium album, sucrose and raffinose-family oligosaccharides are the major products of photosynthesis that are stored in leaves. Using gas analysis and 14CO2 feeding, we compared photosynthesis and the partitioning of recently-fixed carbon in plants where sink activity was lowered by excision of flowers and chilling of roots with those where sink activity was not modified. Reduction in sink activity led to a reduction in the maximum rate of photosynthesis, to retention of fixed carbon in source leaves and to the progressive accumulation of raffinose-family oligosaccharides. This ultimately affected the extractable activities of invertase and sucrose phosphate synthase. At the end of the light period, invertase activity was significantly higher in treated plants. By contrast sucrose phosphate synthase activity was significantly lower in treated plants. We propose that reducing sink activity in L. album is associated with a shift in metabolism away from starch and sucrose synthesis and towards sucrose catabolism, galactinol utilisation and the synthesis of raffinose-family oligosaccharides.
Chinese energy policy progress and challenges in the transition to low carbon development, 2006-2013
Resumo:
If the world is not to jeopardize the chances for human life on Earth, climate change must be mitigated; therefore, achieving low carbon development is crucial. China is the world's greatest GHG emitter, energy producer and energy consumer; investigating its energy-climate policy developments and international positions are of utmost importance to understand and tackle current stumbling blocks of the global energy and climate governance.
Resumo:
ABSTRACTAiming to compare three different methods for the determination of organic carbon (OC) in the soil and fractions of humic substances, seventeen Brazilian soil samples of different classes and textures were evaluated. Amounts of OC in the soil samples and the humic fractions were measured by the dichromate-oxidation method, with and without external heating in a digestion block at 130 °C for 30 min; by the loss-on-ignition method at 450 °C during 5 h and at 600 °C during 6 h; and by the dry combustion method. Dry combustion was used as reference in order to measure the efficiency of the other methods. Soil OC measured by the dichromate-oxidation method with external heating had the highest efficiency and the best results comparing to the reference method. When external heating was not used, the mean recovery efficiency dropped to 71%. The amount of OC was overestimated by the loss-on-ignition methods. Regression equations obtained between total OC contents of the reference method and those of the other methods showed relatively good adjustment, but all intercepts were different from zero (p < 0.01), which suggests that more accuracy can be obtained using not one single correction factor, but considering also the intercept. The Walkley-Black method underestimated the OC contents of the humic fractions, which was associated with the partial oxidation of the humin fraction. Better results were obtained when external heating was used. For the organic matter fractions, the OC in the humic and fulvic acid fractions can be determined without external heating if the reference method is not available, but the humin fraction requires the external heating.
Resumo:
ABSTRACT Soils of tropical regions are more weathered and in need of conservation managements to maintain and improve the quality of its components. The objective of this study was to evaluate the availability of K, the organic matter content and the stock of total carbon of an Argisol after vinasse application and manual and mechanized harvesting of burnt and raw sugarcane, in western São Paulo.The data collection was done in the 2012/2013 harvest, in a bioenergy company in Presidente Prudente/SP. The research was arranged out following a split-plot scheme in a 5x5 factorial design, characterized by four management systems: without vinasse application and harvest without burning; with vinasse application and harvest without burning; with vinasse application and harvest after burning; without vinasse application and harvest after burning; plus native forest, and five soil sampling depths (0-10 10-20, 20-30, 30-40, 40-50 cm), with four replications. In each treatment, the K content in the soil and accumulated in the remaining dry biomass in the area, the levels of organic matter, organic carbon and soil carbon stock were determined. The mean values were compared by Tukey test. The vinasse application associated with the harvest without burning increased the K content in soil layers up to 40 cm deep. The managements without vinasse application and manual harvest after burning, and without vinasse application with mechanical harvesting without burning did not increase the levels of organic matter, organic carbon and stock of total soil organic carbon, while the vinasse application and harvest after burning and without burning increased the levels of these attributes in the depth of 0-10 cm.
Resumo:
ABSTRACTResource partitioning is important for species coexistence. Species with similar ecomorphology are potential competitors, especially when phylogenetically close, due to niche conservatism. The aim of this study was to investigate the resource partitioning among populations of two species of lebiasinids (Copella nigrofasciata and Pyrrhulina aff. brevis) that co-occur in a first-order Amazonian stream, analyzing the trophic ecology, feeding strategies and ecomorphological attributes related to the use of food and space by these species. Fish were captured in May and September 2010. The stomach contents of 60 individuals were analyzed and quantified volumetrically to characterize the feeding ecology of both species. Eleven morphological attributes were measured in 20 specimens and combined in nine ecomorphological indices. Both species had an omnivorous-invertivorous diet and consumed predominantly allochthonous items. Both showed a tendency to a generalist diet, but intrapopulational variation in resource use was also detected. Overall feeding niche overlap was high, but differed between seasons: low during the rainy season and high in the dry season. In the latter, the food niche overlap was asymmetric because C. nigrofasciata consumed several prey of P. aff. brevis, which reduced its food spectrum. The ecomorphological analysis suggests that C. nigrofasciatahas greater swimming capacity (greater relative length of caudal peduncle) than P. aff. brevis, which has greater maneuverability and tendency to inhabit lentic environments (greater relative depth of the body). Our results demonstrate that these species have similar trophic ecology and suggest a spatial segregation, given by morphological differences related to locomotion and occupation of habitat, favoring their coexistence.
Resumo:
O atual conhecimento relativo à distribuição em percentagem das várias frações de enxofre nos solos provem principalmente dos estudos dos solos de regiões temperadas. Em vista disso, este estudo foi conduzido para determinar as frações do S e as relações C-N-P-S em alguns solos da região subtropical dos Estados de São Paulo e do Paraná, Brasil, e comparar estes valores nestes solos com aqueles nos solos do Estado de Iowa, dos Estados Unidos da América do Norte. As análises das frações de enxofre nos solos dos dois países, indicaram que os solos do Brasil contem sulfato inorgânico adsorvido. Expressos como percentagem do S total, os solos do Brasil acusaram de 5 a 23% (média 11%) de S-sulfato inorgânico, de 20 a 65% (média 40%) de S-ester sulfato, de 5 a 12% (média 7%) de S-ligado ao Carbono e de 24 a 59% (média 42%) de S orgânico não identificado. As percentagens correspondentes nos solos de Iowa foram de 2 a 8% (média 5%) de S-sulfato inorgânico, de 43 a 60% (média 50%) de S-ester sufato, de 7 a 18% (média 11%) de enxofre ligado ao carbono e de 30 a 39% (média 34%) de S orgânico, não identificado. Outrossim, não foi encontrado o enxofre inorgânico não-sulfato em nenhum dos solos analisados. Houve grandes variações nas relações C, N, Ρ e S entre solos brasileiros quando comparados com aqueles do Iowa.
Resumo:
In this study the hepatic lipoprotein lipase (LPL), activity was evaluated in adult female mice acclimatized at 5-C and submitted to carbon tetrachloride (CCI) or ethionine, in order to determine the possible role of this enzuyme in the fatty liver. The results were compared with those obtained in mice kept at room temperature (27-C) that the same hepatoesteatosis inducing agent. In contrast to animals kept at room temperature, in cold aclimatized mice neither the enhancement of the LPL-liver activity by the action of CCI or ethionine occurred nor the development of fatty infiltration in the liver was observed. We conclude that the low temperature induced a protective effect against CCI or ethionine-induced fatty liver that was correlated with the no-increase of the hepatic LPL activity.
Resumo:
Three types of carbon dioxide-baited traps, i.e., the Centers for Disease Control Miniature Light Trap without light, the BioGents (BG) Sentinel Mosquito Trap (BG-Sentinel) and the Mosquito Magnet® Liberty Plus were compared with human landing collections in their efficiency in collecting Anopheles (Nyssorhynchus) aquasalis mosquitoes. Of 13,549 total mosquitoes collected, 1,019 (7.52%) were An. aquasalis. Large numbers of Culex spp were also collected, in particular with the (BG-Sentinel). The majority of An. aquasalis (83.8%) were collected by the human landing collection (HLC). None of the trap catches correlated with HLC in the number of An. aquasalis captured over time. The high efficiency of the HLC method indicates that this malaria vector was anthropophilic at this site, especially as carbon dioxide was insufficiently attractive as stand-alone bait. Traps using carbon dioxide in combination with human odorants may provide better results.
Resumo:
We studied the feasibility of using halloysite clay nanotubes (HNTs) and carboxyl-functionalised multi-walled carbon nanotubes (COOH-MWCNTs) as antigen carriers to improve immune responses against a recombinant LipL32 protein (rLipL32). Immunisation using the HNTs or COOH-MWCNTs significantly increased the rLipL32-specific IgG antibody titres (p < 0.05) of Golden Syrian hamsters. None of the vaccines tested conferred protection against a challenge using a virulent Leptospira interrogans strain. These results demonstrated that nanotubes can be used as antigen carriers for delivery in hosts and the induction of a humoral immune response against purified leptospiral antigens used in subunit vaccine preparations.
Resumo:
In spite of the normally low content of organic matter found in sandy soils, it is responsible for almost the totality of cation exchange capacity (CEC), water storage and availability of plant nutrients. It is therefore important to evaluate the impact of alternative forest exploitation on the improvement of soil C and N accumulation on these soils. This study compared pure and mixed plantations of Eucalyptus grandis and Pseudosamanea guachapele, a N2-fixing leguminous tree, in relation to their effects on soil C and N stocks. The studied Planosol area had formerly been covered by Panicum maximum pasture for at least ten years without any fertilizer addition. To estimate C and N contents, the soil was sampled (at depths of 0-2.5; 2.5-5.0; 5.0-7.5; 7.5-10.0; 10.0-20.0 and 20.0-40.0 cm), in pure and mixed five-year-old tree plantations, as well as on adjacent pasture. The natural abundance 13C technique was used to estimate the contribution of the soil organic C originated from the trees in the 0-10 cm soil layer. Soil C and N stocks under mixed plantation were 23.83 and 1.74 Mg ha-1, respectively. Under guachapele, eucalyptus and pasture areas C stocks were 14.20, 17.19 and 24.24 Mg ha-1, respectively. For these same treatments, total N contents were 0.83; 0.99 and 1.71 Mg ha-1, respectively. Up to 40 % of the soil organic C in the mixed plantation was estimated to be derived from trees, while in pure eucalyptus and guachapele plantations these same estimates were only 19 and 27 %, respectively. Our results revealed the benefits of intercropped leguminous trees in eucalyptus plantations on soil C and N stocks.
Resumo:
The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis) to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation. C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun.
Resumo:
Agricultural soils can act as a source or sink of atmospheric C, according to the soil management. This long-term experiment (22 years) was evaluated during 30 days in autumn, to quantify the effect of tillage systems (conventional tillage-CT and no-till-NT) on the soil CO2-C flux in a Rhodic Hapludox in Rio Grande do Sul State, Southern Brazil. A closed-dynamic system (Flux Chamber 6400-09, Licor) and a static system (alkali absorption) were used to measure soil CO2-C flux immediately after soybean harvest. Soil temperature and soil moisture were measured simultaneously with CO2-C flux, by Licor-6400 soil temperature probe and manual TDR, respectively. During the entire month, a CO2-C emission of less than 30 % of the C input through soybean crop residues was estimated. In the mean of a 30 day period, the CO2-C flux in NT soil was similar to CT, independent of the chamber type used for measurements. Differences in tillage systems with dynamic chamber were verified only in short term (daily evaluation), where NT had higher CO2-C flux than CT at the beginning of the evaluation period and lower flux at the end. The dynamic chamber was more efficient than the static chamber in capturing variations in CO2-C flux as a function of abiotic factors. In this chamber, the soil temperature and the water-filled pore space (WFPS), in the NT soil, explained 83 and 62 % of CO2-C flux, respectively. The Q10 factor, which evaluates CO2-C flux dependence on soil temperature, was estimated as 3.93, suggesting a high sensitivity of the biological activity to changes in soil temperature during fall season. The CO2-C flux measured in a closed dynamic chamber was correlated with the static alkali adsorption chamber only in the NT system, although the values were underestimated in comparison to the other, particularly in the case of high flux values. At low soil temperature and WFPS conditions, soil tillage caused a limited increase in soil CO2-C flux.