16 resultados para Carbon Species

em Scielo Saúde Pública - SP


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Soil aggregation and the distribution of total organic carbon (TOC) may be affected by soil tillage and cover crops. The objective of this study was to determine the effects of crop rotation with cover crops on soil aggregation, TOC concentration in the soil aggregate fractions, and soil bulk density under a no-tillage system (NTS) and conventional tillage system (CTS, one plowing and two disking). This was a three-year study with cover crop/rice/cover crop/rice rotations in the Brazilian Cerrado. A randomized block experimental design with six treatments and three replications was used. The cover crops (treatments) were: fallow, Panicum maximum, Brachiaria ruziziensis, Brachiaria brizantha, and millet (Pennisetum glaucum). An additional treatment, fallow plus CTS, was included as a control. Soil samples were collected at the depths of 0.00-0.05 m, 0.05-0.10 m, and 0.10-0.20 m after the second rice harvest. The treatments under the NTS led to greater stability in the soil aggregates (ranging from 86.33 to 95.37 %) than fallow plus CTS (ranging from 74.62 to 85.94 %). Fallow plus CTS showed the highest number of aggregates smaller than 2 mm. The cover crops affected soil bulk density differently, and the millet treatment in the NTS had the lowest values. The cover crops without incorporation provided the greatest accumulation of TOC in the soil surface layers. The TOC concentration was positively correlated with the aggregate stability index in all layers and negatively correlated with bulk density in the 0.00-0.10 m layer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Charcoal is an important energy raw material and its properties are influenced by the wood's anatomical and chemical composition and the production process. The aim of this study was to evaluate the anatomical characteristics, calorific power and volatiles and ash content of carbonized wood from Byrsonima spicata, Calophyllum brasiliense, Cecropia sciadophylla, Cochlospermum orinocense and Schefflera morototoni. The calorific power varied from 26,878 to 31,117 kJ kg-1; the content of volatile materials ranged from 20.9 to 31.7%; ash content ranged from 0.1 to 3.8%; and carbon content varied from 68.2 to 75.3%. Anatomical structures of charcoal can be used for species identification. The studied species are not indicated for charcoal production because the levels of ash and volatile compounds are higher than those recommended for charcoal produced for household use. In addition, the calorific power and level of carbon content are insufficient for use in the steel industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Studies have shown that both carbon dioxide (CO2) and octenol (1-octen-3-ol) are effective attractants for mosquitoes. The objective of the present study was to evaluate the attractiveness of 1-octen-3-ol and CO2 for diurnal mosquitoes in the southeastern Atlantic forest. A Latin square experimental design was employed with four treatments: CDC-light trap (CDC-LT), CDC-LT and 1-octen-3-ol, CDC-LT and CO2 and CDC-LT with 1-octen-3-ol and CO2. Results demonstrated that both CDC-CO2 and CDC-CO2-1-octen-3-ol captured a greater number of mosquito species and specimens compared to CDC-1-octen-3-ol; CDC-LT was used as the control. Interestingly, Anopheles (Kerteszia) sp. was generally attracted to 1-octen-3-ol, whereas Aedes serratus was the most abundant species in all Latin square collections. This species was recently shown to be competent to transmit the yellow fever virus and may therefore play a role as a disease vector in rural areas of Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of green manure may contribute to reduce soil erosion and increase the soil organic matter content and N availability in coffee plantations in the Zona da Mata, State of Minas Gerais, in Southeastern Brazil. The potential of four legumes (A. pintoi, C. mucunoides, S. aterrimum and S. guianensis) to produce above-ground biomass, accumulate nutrients and mineralize N was studied in two coffee plantations of subsistence farmers under different climate conditions. The biomass production of C. mucunoides was influenced by the shade of the coffee plantation. C. mucunoides tended to mineralize more N than the other legumes due to the low polyphenol content and polyphenol/N ratio. In the first year, the crop establishment of A. pintoi in the area took longer than of the other legumes, resulting in lower biomass production and N2 fixation. In the long term, cellulose was the main factor controlling N mineralization. The biochemical characteristics, nutrient accumulation and biomass production of the legumes were greatly influenced by the altitude and position of the area relative to the sun.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There are great concerns about degradation of agricultural soils. It has been suggested that cultivating different plant species intercropped with coffee plants can increase microbial diversity and enhance soil sustainability. The objective of this study was to evaluate enzyme activity (urease, arylsulfatase and phosphatase) and alterations in C and N mineralization rates as related to different legume cover crops planted between rows of coffee plants. Soil samples were collected in a field experiment conducted for 10 years in a sandy soil in the North of Paraná State, Brazil. Samples were collected from the 0-10 cm layer, both from under the tree canopy and in-between rows in the following treatments: control, Leucaena leucocephala, Crotalaria spectabilis, Crotalaria breviflora, Mucuna pruriens, Mucuna deeringiana, Arachis hypogaea and Vigna unguiculata. The soil was sampled in four stages of legume cover crops: pre-planting (September), after planting (November), flowering stage (February) and after plant residue incorporation (April), from 1997 to 1999. The green manure species influenced soil enzyme activity (urease, arylsulfatase and phosphatase) and C and N mineralization rates, both under the tree canopy and in-between rows. Cultivation of Leucaena leucocephala increased acid phosphatase and arilsulfatase activity and C and N mineralization both under the tree canopy and in-between rows. Intercropped L. leucocephala increased urease activity under the tree canopy while C. breviflora increased urease activity in-between rows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phosphorus supply to crops in tropical soils is deficient due to its somewhat insoluble nature in soil, and addition of P fertilizers has been necessary to achieve high yields. The objective of this study was to examine the mechanisms through which a cover crop (Congo grass - Brachiaria ruziziensis) in rotation with soybean can enhance soil and fertilizer P availability using long-term field trials and laboratory chemical fractionation approaches. The experimental field had been cropped to soybean in rotation with several species under no-till for six years. An application rate of no P or 240 kg ha-1 of P2O5 had been applied as triple superphosphate or as Arad rock phosphate. In April 2009, once more 0.0 or 80.0 kg ha-1 of P2O5 was applied to the same plots when Congo grass was planted. In November 2009, after Congo grass desiccation, soil samples were taken from the 0-5 and 5-10 cm depth layer and soil P was fractionated. Soil-available P increased to the depth of 10 cm through growing Congo grass when P fertilizers were applied. The C:P ratio was also increased by the cover crop. Congo grass cultivation increased P content in the soil humic fraction to the depth of 10 cm. Congo grass increases soil P availability by preventing fertilizer from being adsorbed and by increasing soil organic P.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The application of pig slurry rates and plant cultivation can modify the soil phosphorus (P) content and distribution of chemical species in solution. The purpose of this study was to evaluate the total P, available P and P in solution, and the distribution of chemical P species in solution, in a soil under longstanding pig slurry applications and crop cultivation. The study was carried out in soil columns with undisturbed structure, collected in an experiment conducted for eight years in the experimental unit of the Universidade Federal de Santa Maria (UFSM), Santa Maria (RS). The soil was an Argissolo Vermelho distrófico arênico (Typic Hapludalf), subjected to applications of 0, 20, 40, and 80 m3 ha-1 pig slurry. Soil samples were collected from the layers 0-5, 5-10, 10-20, 20-30, 30-40, and 40-60 cm, before and after black oat and maize grown in a greenhouse, for the determination of available P, total P and P in the soil solution. In the solution, the concentration of the major cations, anions, dissolved organic carbon (DOC), and pH were determined. The distribution of chemical P species was determined by software Visual Minteq. The 21 pig slurry applications increased the total P content in the soil to a depth of 40 cm, and the P extracted by Mehlich-1 and from the solution to a depth of 30 cm. Successive applications of pig slurry changed the balance between the solid and liquid phases in the surface soil layers, increasing the proportion of the total amount of P present in the soil solution, aside from changing the chemical species in the solution, reducing the percentage complexed with Al and increasing the one complexed with Ca and Mg in the layers 0-5 and 5-10 cm. Black oat and maize cultivation increased pH in the solution, thereby increasing the proportion of HPO42- and reducing H2PO4- species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Soils constructed after mining often have low carbon (C) stocks and low quality of organic matter (OM). Cover crops are decisive for the recovery process of these stocks, improving the quality of constructed soils. Therefore, the goal of this study was to evaluate the effect of cover crops on total organic C (TOC) stocks, C distribution in physical fractions of OM and the C management index (CMI) of a soil constructed after coal mining. The experiment was initiated in 2003 with six treatments: Hemarthria altissima (T1), Paspalum notatum (T2), Cynodon dactylon (T3), Urochloa brizantha (T4), bare constructed soil (T5), and natural soil (T6). Soil samples were collected in 2009 from the 0.00-0.03 m layer, and the TOC and C stocks in the physical particle size fractions (carbon in the coarse fraction - CCF, and mineral-associated carbon - MAC) and density fractions (free light fraction - FLF; occluded light fraction - OLF, and heavy fraction - HF) of OM were determined. The CMI components: carbon pool index (CPI), lability (L) and lability index (LI) were estimated by both fractionation methods. No differences were observed between TOC, CCF and MAC stocks. The lowest C stocks in FLF and OLF fractions were presented by T2, 0.86 and 0.61 Mg ha-1, respectively. The values of TOC stock, C stock in physical fractions and CMI were intermediate, greater than T5 and lower than T6 in all treatments, indicating the partial recovery of soil quality. As a result of the better adaptation of the species Hemarthria and Brizantha, resulting in greater accumulation of labile organic material, the CPI, L, LI and CMI values were higher in these treatments, suggesting a greater potential of these species for recovery of constructed soils.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Increasing attention has been given, over the past decades, to the production of exopolysaccharides (EPS) from rhizobia, due to their various biotechnological applications. Overall characterization of biopolymers involves evaluation of their chemical, physical, and biological properties; this evaluation is a key factor in understanding their behavior in different environments, which enables researchers to foresee their potential applications. Our focus was to study the EPS produced by Mesorhizobium huakuii LMG14107, M. loti LMG6125, M. plurifarium LMG11892,Rhizobium giardini bv. giardiniH152T, R. mongolense LMG19141, andSinorhizobium (= Ensifer)kostiense LMG19227 in a RDM medium with glycerol as a carbon source. These biopolymers were isolated and characterized by reversed-phase high-performance liquid chromatography (RP-HPLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. Maximum exopolysaccharide production was 3.10, 2.72, and 2.50 g L-1for the strains LMG6125, LMG19227, and LMG19141, respectively. The purified EPS revealed prominent functional reactive groups, such as hydroxyl and carboxylic, which correspond to a typical heteropolysaccharide. The EPS are composed primarily of galactose and glucose. Minor components found were rhamnose, glucuronic acid, and galacturonic acid. Indeed, from the results of techniques applied in this study, it can be noted that the EPS are species-specific heteropolysaccharide polymers composed of common sugars that are substituted by non-carbohydrate moieties. In addition, analysis of these results indicates that rhizobial EPS can be classified into five groups based on ester type, as determined from the 13C NMR spectra. Knowledge of the EPS composition now facilitates further investigations relating polysaccharide structure and dynamics to rheological properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT The cultivation of cover crops intercropped with fruit trees is an alternative to maintain mulch cover between plant rows and increase soil organic carbon (C) stocks. The objective of this study was to evaluate changes in soil total organic C content and labile organic matter fractions in response to cover crop cultivation in an orange orchard. The experiment was performed in the state of Bahia, in a citrus orchard with cultivar ‘Pera’ orange (Citrus sinensis) at a spacing of 6 × 4 m. A randomized complete block design with three replications was used. The following species were used as cover crops: Brachiaria (Brachiaria decumbes) – BRAQ, pearl millet (Pennisetum glaucum) – MIL, jack bean (Canavalia ensiformis) – JB, blend (50 % each) of jack bean + millet (JB/MIL), and spontaneous vegetation (SPV). The cover crops were broadcast-seeded between the rows of orange trees and mechanically mowed after flowering. Soil sampling at depths of 0.00-0.10, 0.10-0.20, and 0.20-0.40 m was performed in small soil trenches. The total soil organic C (SOC) content, light fraction (LF), and the particulate organic C (POC), and oxidizable organic C fractions were estimated. Total soil organic C content was not significantly changed by the cover crops, indicating low sensitivity in reacting to recent changes in soil organic matter due to management practices. Grasses enabled a greater accumulation of SOC stocks in 0.00-0.40 m compared to all other treatments. Jack bean cultivation increased LF and the most labile oxidizable organic C fraction (F1) in the soil surface and the deepest layer tested. Cover crop cultivation increased labile C in the 0.00-0.10 m layer, which can enhance soil microbial activity and nutrient absorption by the citrus trees. The fractions LF and F1 may be suitable indicators for monitoring changes in soil organic matter content due to changes in soil management practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this work was to evaluate the alterations in carbon and nitrogen mineralization due to different soil tillage systems and groundcover species for intercropped orange trees. The experiment was established in an Ultisol soil (Typic Paleudults) originated from Caiuá sandstone in northwestern of the state of Paraná, Brazil, in an area previously cultivated with pasture (Brachiaria humidicola). Two soil tillage systems were evaluated: conventional tillage (CT) in the entire area and strip tillage (ST) with a 2-m width, each with different groundcover vegetation management systems. The citrus cultivar utilized was the 'Pera' orange (Citrus sinensis) grafted onto a 'Rangpur' lime rootstock. The soil samples were collected at a 0-15-cm depth after five years of experiment development. Samples were collected from under the tree canopy and from the inter-row space after the following treatments: (1) CT and annual cover crop with the leguminous Calopogonium mucunoides; (2) CT and perennial cover crop with the leguminous peanut Arachis pintoi; (3) CT and evergreen cover crop with Bahiagrass Paspalum notatum; (4) CT and cover crop with spontaneous B. humidicola grass vegetation; and (5) ST and maintenance of the remaining grass (pasture) of B. humidicola. The soil tillage systems and different groundcover vegetation influenced the C and N mineralization, both under the tree canopy and in the inter-row space. The cultivation of B. humidicola under strip tillage provided higher potential mineralization than the other treatments in the inter-row space. Strip tillage increased the C and N mineralization compared to conventional tillage. The grass cultivation increased the C and N mineralization when compared to the others treatments cultivated in the inter-row space.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Different climate models, modeling methods and carbon emission scenarios were used in this paper to evaluate the effects of future climate changes on geographical distribution of species of economic and cultural importance across the Cerrado biome. As the results of several studies have shown, there are still many uncertainties associated with these projections, although bioclimatic models are still widely used and effective method to evaluate the consequences for biodiversity of these climate changes. In this article, it was found that 90% of these uncertainties are related to methods of modeling, although, regardless of the uncertainties, the results revealed that the studied species will reduce about 78% of their geographic distribution in Cerrado. For an effective work on the conservation of these species, many studies still need to be carried out, although it is already possible to observe that climate change will have a strong influence on the pattern of distribution of these species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Eucalyptus plantations represent a short term and cost efficient alternative for sequestrating carbon dioxide from the atmosphere. Despite the known potential of forest plantations of fast growing species to store carbon in the biomass, there are relatively few studies including precise estimates of the amount of carbon in these plantations. In this study it was determined the carbon content in the stems, branches, leaves and roots of a clonal Eucalyptus grandis plantation in the Southeast of Brazil. We developed allometric equations to estimate the total amount of carbon and total biomass, and produced an estimate of the carbon stock in the stand level. Altogether, 23 sample trees were selected for aboveground biomass assessment. The roots of 9 of the 23 sampled trees were partially excavated to assess the belowground biomass at a singletree level. Two models with DBH, H and DBH2H were tested. The average relative share of carbon content in the stem, branch, leaf and root compartments was 44.6%, 43.0%, 46.1% and 37.8%, respectively, which is smaller than the generic value commonly used (50%). The best-fit allometric equations to estimate the total amount of carbon and total biomass had DBH2H as independent variable. The root-to-shoot ratio was relatively stable (C.V. = 27.5%) probably because the sub-sample was composed of clones. Total stand carbon stock in the Eucalyptus plantation was estimated to be 73.38 MgC ha-1, which is within the carbon stock range for Eucalyptus plantations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lianas are plants that depend on support to reach some appreciable height, and they represent an important structural component of tropical forests. Although they predominate in clearings and gaps, some species survive in the understory. Changes in irradiance between these environments can affect leaf morphology and absorption of photosynthetic active radiation (PAR). We had examined the effects of different light regimes on leaf optical properties, chlorophyll content, specific leaf area, and leaf surface morphology in young seedlings of Canavalia parviflora Benth. (Fabaceae) and Gouania virgata Reissk (Rhamnaceae). The seedlings were distributed on workbenches covered by different layers of neutral shade netting, thus creating three levels of light intensity corresponding to about 40%, 10% and 1.5% of solar irradiance. Plants growing in full sun were used as a control. Both species exhibited an increase in reflectance in full sun and alterations in leaf morphology. Reduction in irradiance induced an increase in absorptance (decrease in reflectance and transmittance) in C. parviflora leaves in the green due to higher chlorophyll content. In G. virgata the spectral leaf changes were less observable. However, the efficiency of absorption was more pronounced in G. virgata than in C. parviflora leaves under 40%, 10% and 1.5% photon flux density (PFD). The greater efficiency of absorption in G. virgata was due to a larger specific leaf area (SLA) under these conditions. The adjustments in leaf optical properties can aid these species in overall carbon gain under limited light conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this study we evaluated photosynthetic characteristics and patterns of biomass accumulation in seedlings of two tree species from a Semideciduous Tropical Forest of Brazil. Seedlings of Trema micrantha (L.) Blum. (pioneer) and Hymenaea courbaril (L.) var. stilbocarpa (Hayne) Lee & Langenh. (climax) were grown for 4 months under low light (LL) (5%-8% of sunlight) and high light (HL) (100% of sunlight). Under HL, T. micrantha showed higher CO2 assimilation rates (A CO2) and light saturation than H. courbaril. Under LL, A CO2 were higher in H. courbaril. Under LL, total chlorophyll and carotenoid contents per unit leaf area were higher in H. courbaril. Chlorophyll a/b ratio was higher in T. micrantha under both light regimes. A CO2 and Fv/Fm ratio at both pre-dawn and midday in H. coubaril were lower in HL indicating chronic photoinhibition. Thus, the climax species was more susceptible to photoinhibition than the pioneer. However, H. courbaril produced higher total biomass under both treatments showing high efficiency in the maintenance of a positive carbon balance. Thus, both species expressed characteristics that favor growth under conditions that resemble their natural microenvironments, but H. courbaril also grew under HL. The ecophysiological range of responses to contrasting light levels of this climax plant seems to be broader than generally observed for other rainforest climax species. We propose that this could be related to the particular spatio-temporal light regime of the semideciduous forests.