43 resultados para CREATININE KINASE
em Scielo Saúde Pública - SP
Resumo:
OBJECTIVE: To verify the association of serum markers of myocardial injury, such as troponin I, creatinine kinase, and creatinine kinase isoenzyme MB, and inflammatory markers, such as tumor necrosis factor alpha (TNF-alpha), C-reactive protein, and the erythrocyte sedimentation rate in the perioperative period of cardiac surgery, with the occurrence of possible postpericardiotomy syndrome. METHODS: This was a cohort study with 96 patients undergoing cardiac surgery assessed at the following 4 different time periods: the day before surgery (D0); the 3rd postoperative day (D3); between the 7th and 10th postoperative days (D7-10); and the 30th postoperative day (D30). During each period, we evaluated demographic variables (sex and age), surgical variables (type and duration , extracorporeal circulation), and serum dosages of the markers of myocardial injury and inflammatory response. RESULTS: Of all patients, 12 (12.5%) met the clinical criteria for a diagnosis of postpericardiotomy syndrome, and their mean age was 10.3 years lower than the age of the others (P=0.02). The results of the serum markers for tissue injury and inflammatory response were not significantly different between the 2 assessed groups. No significant difference existed regarding either surgery duration or extracorporeal circulation. CONCLUSION: The patients who met the clinical criteria for postpericardiotomy syndrome were significantly younger than the others were. Serum markers for tissue injury and inflammatory response were not different in the clinically affected group, and did not correlate with the different types and duration of surgery or with extracorporeal circulation.
Resumo:
Mitogen-activated protein kinases (MAPK) may be involved in the pathogenesis of acute renal failure. This study investigated the expression of p-p38 MAPK and nuclear factor kappa B (NF-kappaB) in the renal cortex of rats treated with gentamicin. Twenty rats were injected with gentamicin, 40 mg/kg, im, twice a day for 9 days, 20 with gentamicin + pyrrolidine dithiocarbamate (PDTC, an NF-kappaB inhibitor), 14 with 0.15 M NaCl, im, twice a day for 9 days, and 14 with 0.15 M NaCl , im, twice a day for 9 days and PDTC, 50 mg kg-1 day-1, ip, twice a day for 15 days. The animals were killed 5 and 30 days after the last of the injections and the kidneys were removed for histological, immunohistochemical and Western blot analysis and for nitrate determination. The results of the immunohistochemical study were evaluated by counting the p-p38 MAPK-positive cells per area of renal cortex measuring 0.05 mm². Creatinine was measured by the Jaffé method in blood samples collected 5 and 30 days after the end of the treatments. Gentamicin-treated rats presented a transitory increase in plasma creatinine levels. In addition, animals killed 5 days after the end of gentamicin treatment presented acute tubular necrosis and increased nitrate levels in the renal cortex. Increased expression of p-p38 MAPK and NF-kappaB was also observed in the kidneys from these animals. The animals killed 30 days after gentamicin treatment showed residual areas of interstitial fibrosis in the renal cortex, although the expression of p-p38 MAPK in their kidneys did not differ from control. Treatment with PDTC reduced the functional and structural changes induced by gentamicin as well as the expression of p-p38 MAPK and NF-kappaB. The increased expression of p-p38 MAPK and NF-kappaB observed in these rats suggests that these signaling molecules may be involved in the pathogenesis of tubulointerstitial nephritis induced by gentamicin.
Resumo:
Fluid management and dosage regimens of drugs in preterm infants should be based on the glomerular filtration rate. The current methods to determine glomerular flitration rate are invasive, time-consuming, and expensive. In contrast, creatinine clearance can be easy obtained and quickly determined. The purpose of this study was to compare plasma creatinine on the third and seventh day of life in preterm newborn infants, to evaluate the influence of maternal creatinine, and to demonstrate creatinine clearance can be used as a reliable indicator of glomerular filtration rate. We developed a prospective study (1994) including 40 preterm newborns (gestational age < 37 weeks), average = 34 weeks; birth weight (average) = 1840 g, in the first week of life. Inclusion criteria consisted of: absence of renal and urinary tract anomalies; O2 saturation 3 92%; adequate urine output (>1ml/kg/hr); normal blood pressure; absence of infections and no sympathomimetic amines in use. A blood sample was collected to determine plasma creatinine (enzymatic method) on the third and seventh day of life and creatinine clearance (CrCl) was obtained using the following equation: , k = 0.33 in preterm infant All plasma creatinine determinations showed normal values [third day: 0.78 mg/dl ± 0.24 (mean ± SD)and seventh day: 0.67 mg/dl ± 0.31 - (p>0.05)]. Also all creatinine clearance at third and seventh day of life were normal [third day: 19.5 ml/min ± 5.2 (mean ± SD) and seventh day: 23.8 ml/min ± 7.3 - (p>0,05)]. All preterm infants developed adequate renal function for their respective gestational age. In summary, our results indicate that, for clinical practice, the creatinine clearance, using newborn length, can be used to estimate glomerular filtration rate in preterm newborn infants.
Resumo:
AbstractBackground:Risk scores for cardiac surgery cannot continue to be neglected.Objective:To assess the performance of “Age, Creatinine and Ejection Fraction Score” (ACEF Score) to predict mortality in patients submitted to elective coronary artery bypass graft and/or heart valve surgery, and to compare it to other scores.Methods:A prospective cohort study was carried out with the database of a Brazilian tertiary care center. A total of 2,565 patients submitted to elective surgeries between May 2007 and July 2009 were assessed. For a more detailed analysis, the ACEF Score performance was compared to the InsCor’s and EuroSCORE’s performance through correlation, calibration and discrimination tests.Results:Patients were stratified into mild, moderate and severe for all models. Calibration was inadequate for ACEF Score (p = 0.046) and adequate for InsCor (p = 0.460) and EuroSCORE (p = 0.750). As for discrimination, the area under the ROC curve was questionable for the ACEF Score (0.625) and adequate for InsCor (0.744) and EuroSCORE (0.763).Conclusion:Although simple to use and practical, the ACEF Score, unlike InsCor and EuroSCORE, was not accurate for predicting mortality in patients submitted to elective coronary artery bypass graft and/or heart valve surgery in a Brazilian tertiary care center. (Arq Bras Cardiol. 2015; [online].ahead print, PP.0-0)
Resumo:
Treatment of cancer using gene therapy is based on adding a property to the cell leading to its elimination. One possibility is the use of suicide genes that code for enzymes that transform a pro-drug into a cytotoxic product. The most extensively used is the herpes simplex virus thymidine kinase (TK) gene, followed by administration of the antiviral drug ganciclovir (GCV). The choice of the promoter to drive the transcription of a transgene is one of the determinants of a given transfer vector usefulness, as different promoters show different efficiencies depending on the target cell type. In the experiments presented here, we report the construction of a recombinant adenovirus carrying TK gene (Ad-TK) driven by three strong promoters (P CMV IE, SV40 and EN1) and its effectiveness in two cell types. Human HeLa and mouse CCR2 tumor cells were transduced with Ad-TK and efficiently killed after addition of GCV. We could detect two sizes of transcripts of TK gene, one derived from the close together P CMV IE/SV40 promoters and the other from the 1.5 Kb downstream EN1 promoter. The relative amounts of these transcripts were different in each cell type thus indicating a higher flexibility of this system.
Resumo:
Trypanosoma evansi contains protein kinases capable of phosphorylating endogenous substrates with apparent molecular masses in the range between 20 and 205 kDa. The major phosphopolypeptide band, pp55, was predominantly localized in the particulate fraction. Anti-alpha and anti-beta tubulin monoclonal antibodies recognized pp55 by Western blot analyses, suggesting that this band corresponds to phosphorylated tubulin. Inhibition experiments in the presence of emodin, heparin, and 2,3-bisphosphoglycerate indicated that the parasite tubulin kinase was a casein kinase 2 (CK2)-like activity. GTP, which can be utilized instead of ATP by CK2, stimulated rather than inactivated the phosphorylation of tubulin in the parasite homogenate and particulate fraction. However, GTP inhibited the cytosolic CK2 responsible for phosphorylating soluble tubulin and other soluble substrates. Casein and two selective peptide substrates, P1 (RRKDLHDDEEDEAMSITA) for casein kinase (CK1) and P2 (RRRADDSDDDDD) for CK2, were recognized as substrates in T. evansi. While the enzymes present in the soluble fraction predominantly phosphorylated P1, P2 was preferentially labeled in the particulate fractions. These results demonstrated the existence of CK1-like and CK2-like activities primarily located in the parasite cytosolic and membranous fractions, respectively. Histone II-A and kemptide (LRRASVA) also behaved as suitable substrates, implying the existence of other Ser/Thr kinases in T. evansi. Cyclic AMP only increased the phosphorylation of histone II-A and kemptide in the cytosol, demonstrating the existence of soluble cAMP-dependent protein kinase-like activities in T. evansi. However, no endogenous substrates for this enzyme were identified in this fraction. Further evidences were obtained by using PKI (6-22), a reported inhibitor of the catalytic subunit of mammalian cAMP-dependent protein kinases, which specifically hindered the cAMP-dependent phosphorylation of histone II-A and kemptide in the parasite soluble fraction. Since the sum of the values obtained in the parasite cytosolic and particulate fractions were always higher than the values observed in the total T. evansi lysate, the kinase activities examined here appeared to be inhibited in the original extract.
Resumo:
In a previous study, the Schistosoma mansoni Rho1 protein was able to complement Rho1 null mutant Saccharomyces cerevisiae cells at restrictive temperatures and under osmotic stress (low calcium concentration) better than the human homologue (RhoA). It is known that under osmotic stress, the S. cerevisiae Rho1 triggers two distinct pathways: activation of the membrane 1,3-beta-glucan synthase enzymatic complex and activation of the protein kinase C1 signal transduction pathway, promoting the transcription of response genes. In the present work the SmRho1 protein and its mutants smrho1E97P, smrho1L101T, and smrho1E97P, L101T were used to try to clarify the basis for the differential complementation of Rho1 knockout yeast strain by the human and S. mansoni genes. Experiments of functional complementation in the presence of caffeine and in the presence of the osmotic regulator sorbitol were conducted. SmRho1 and its mutants showed a differential complementation of the yeast cells in the presence of caffeine, since smrho1E97P and smrho1E97P, L101T mutants showed a delay in the growth when compared to the yeast complemented with the wild type SmRho1. However, in the presence of sorbitol and caffeine the wild type SmRho1 and mutants showed a similar complementation phenotype, as they allowed yeast growth in all caffeine concentrations tested.
Resumo:
An analysis was made of 30 four-day-old ostriches to evaluate their protein, metabolite, mineral, and serum enzyme profiles, to correlate them with the birds' sex. The values obtained were: Total proteins 3.59±0.72g/dL, albumin 1.04±0.14g/dL, globulins 2.51±0.56g/dL, A:G ratio 0.43± 0.07, total cholesterol 615.10±101.15mg/dL, high density lipoprotein cholesterol (HDL-C) 132.72±20.33mg/dL, low density lipoprotein cholesterol (LDL-C) 454.93±90.81mg/dL, very low density lipoprotein cholesterol (VLDL-C) 27.45±9.96mg/dL, triglycerides 137.23±49.78mg/dL, uric acid 6.24±2.15mg/dL, urea 18.27±12.33mg/dL, creatinine 0.30±0.04mg/dL, total calcium 9.38± 0.76mg/dL, ionized calcium 7.17±0.64mg/dL, phosphorus 6.96±0.91mg/dL, Ca:P ratio 1.37±0.21, iron 24.74±13.02µg/dL, sodium 142.03±6.17mEq/L, chlorides 109.59± 4.99mEq/L, aspartate aminotransferase (AST) 200.67±31.42 U/L, alanine aminotransferase (ALT) 3.90±1.92 U/L, γ-glutamyltransferase (GGT) 1.18±0.73 U/L, alkaline phosphatase (ALP) 597.30± 231.36 U/L, and creatine kinase (CK) 2348.30±755.60 U/L. Males and females showed significant differences in total proteins, globulins, alkaline phosphatase, A:G ratio, and uric acid.
Resumo:
The immunogenicity of an inactivated, experimental vaccine based on a bovine herpesvirus type 5 strain defective in thymidine kinase and glycoprotein E (BoHV-5 gE/TKΔ) was evaluated in cattle and the results were compared with a vaccine containing the parental BoHV-5 strain (SV507/99). To formulate the vaccines, each virus (wildtype SV507/99 and BoHV-5 gE/TK∆) was multiplied in cell culture and inactivated with binary ethyleneimine (BEI). Each vaccine dose contained approximately of 10(7.5) TCID50 of inactivated virus mixed with an oil-based adjuvant (46:54). Forty calves, 6 to 9-months-old, were allocated into two groups of 20 animals each and vaccinated twice (days 0 and 22pv) by the subcutaneous route with either vaccine. Serum samples collected at day 0 and at different intervals after vaccination were tested for virus neutralizing (VN) antibodies against the parental virus and against heterologous BoHV-5 and BoHV-1 isolates. The VN assays demonstrated seroconversion to the respective homologous viruses in all vaccinated animals after the second vaccine dose (mean titers of 17.5 for the wildtype vaccine; 24.1 for the recombinant virus). All animals remained reagents up to day 116 pv, yet showing a gradual reduction in VN titers. Animals from both vaccine groups reacted in similar VN titers to different BoHV-1 and BoHV-5 isolates, yet the magnitude of serological response of both groups was higher against BoHV-5 field isolates. Calves vaccinated with the recombinant virus did not develop antibodies to gE as verified by negative results in a gE-specific ELISA, what would allow serological differentiation from naturally infected animals. Taken together, these results indicate that inactivated antigens of BoHV-5 gE/TK recombinant virus induced an adequate serological response against BoHV-5 and BoHV-1 and thus can be used as an alternative, differential vaccine candidate.
Resumo:
Bovine herpesvirus 5 (BoHV-5) is an important pathogen of cattle in South America and efforts have been made to produce safer and more effective vaccines. In addition to afford protection, herpesvirus vaccines should allow serological differentiation of vaccinated from naturally, latently infected animals. We previously reported the construction and characterization in vitro of a double mutant BoHV-5 (BoHV-5gE/TK Δ) lacking the genes encoding thymidine kinase (tk) for attenuation, and glycoprotein E (gE) as the antigenic marker, as a vaccine candidate strain (Brum et al. 2010a). The present article reports an investigation on the attenuation and immunogenicity of this recombinant in calves. In a first experiment, 80 to 90-day-old seronegative calves (n=6) inoculated intranasally with the recombinant (titer of 10(7.5)TCID50) shed virus in low to moderate titers in nasal secretions for up to 6 days, yet did not develop any respiratory, systemic or neurological signs of infection. At day 30 post-infection (pi) all calves had BoHV-5 specific neutralizing (VN) antibodies in titers of 4 to 8 and were negative for anti-gE antibodies in a commercial ELISA test. Administration of dexamethasone (0.1mg/kg/day during 5 days) to four of these calves at day 42 pi did not result in virus shedding or increase in VN titers, indicating lack of viral reactivation. Secondly, a group of 8-month-old calves (n=9) vaccinated intramuscularly (IM) with the recombinant virus (10(7.5)TCID50/animal) did not shed virus in nasal secretions, remained healthy and developed VN titers from 2 to 8 at day 42 post-vaccination (pv), remaining negative for gE antibodies. Lastly, 21 calves (around 10 months old) maintained under field conditions were vaccinated IM with the recombinant virus (titer of 10(7.3)TCID50). All vaccinated animals developed VN titers from 2 to 16 at day 30 pv. A boost vaccination performed at day 240 pv resulted in a rapid and strong anamnestic antibody response, with VN titers reaching from 16 to 256 at day 14 post-booster. Again, serum samples remained negative for gE antibodies. Selected serum samples from vaccinated animals showed a broad VN activity against nine BoHV-5 and eight BoHV-1 field isolates. These results show that the recombinant virus is attenuated, immunogenic for calves and induces an antibody response differentiable from that induced by natural infection. Thus, the recombinant BoHV-5gE/TKΔ is an adequate candidate strain for a modified live vaccine.
Resumo:
Mutant viral strains deleted in non-essential genes represent useful tools to study the function of specific gene products in the biology of the virus. We herein describe an investigation on the phenotype of a bovine herpesvirus 5 (BoHV-5) recombinant deleted in the gene encoding the enzyme thymidine kinase (TK) in rabbits, with special emphasis to neuroinvasiveness and the ability to establish and reactivate latent infection. Rabbits inoculated with the parental virus (SV-507/99) (n=18) at a low titer (10(5.5)TCID50) shed virus in nasal secretions in titers up to 10(4.5)TCID50 for up to 12 days (average: 9.8 days [5-12]) and 5/ 16 developed neurological disease and were euthanized in extremis. Rabbits inoculated with the recombinant BoHV-5TKΔ at a high dose (10(7.1)TCID50) also shed virus in nasal secretions, yet to lower titers (maximum: 10(2.3)TCID50) and for a shorter period (average: 6.6 days [2-11]) and remained healthy. PCR examination of brain sections of inoculated rabbits at day 6 post-infection (pi) revealed a widespread distribution of the parental virus, whereas DNA of the recombinant BoHV-5TKΔ-was detected only in the trigeminal ganglia [TG] and olfactory bulbs [OB]. Nevertheless, during latent infection (52pi), DNA of the recombinant virus was detected in the TGs, OBs and also in other areas of the brain, demonstrating the ability of the virus to invade the brain. Dexamethasone (Dx) administration at day 65 pi was followed by virus reactivation and shedding by 5/8 rabbits inoculated with the parental strain (mean duration of 4.2 days [1 - 9]) and by none of seven rabbits inoculated with the recombinant virus. Again, PCR examination at day 30 post-Dx treatment revealed the presence of latent DNA in the TGs, OBs and in other areas of the brain of both groups. Taken together, these results confirm that the recombinant BoHV-5TKΔ is highly attenuated for rabbits. It shows a reduced ability to replicate in the nose but retains the ability to invade the brain and to establish latent infection. Additional studies are underway to determine the biological and molecular mechanisms underlying the inability of BoHV-5TKΔ to reactivate from latency.
Resumo:
The ability of thymidine kinase (tk)-deleted recombinant bovine herpesvirus 5 (BoHV-5tkΔ) to establish and reactivate latent infection was investigated in lambs. During acute infection, the recombinant virus replicated moderately in the nasal mucosa, yet to lower titers than the parental strain. At day 40 post-infection (pi), latent viral DNA was detected in trigeminal ganglia (TG) of all lambs in both groups. However, the amount of recombinant viral DNA in TGs was lower (9.7-fold less) than that of the parental virus as determined by quantitative real time PCR. Thus, tk deletion had no apparent effect on the frequency of latent infection but reduced colonization of TG. Upon dexamethasone (Dx) administration at day 40 pi, lambs inoculated with parental virus shed infectious virus in nasal secretions, contrasting with lack of infectivity in secretions of lambs inoculated with the recombinant virus. Nevertheless, some nasal swabs from the recombinant virus group were positive for viral DNA by PCR, indicating low levels of reactivation. Thus, BoHV-5 TK activity is not required for establishment of latency, but seems critical for efficient virus reactivation upon Dx treatment.
Resumo:
The Brown brocket deer (Mazama gouazoubira) is the most common free-living and captive deer in South America, especially in Brazil, and has great ecological and scientific significance. However, data on hematological and biochemical parameters in brown brocket deer are scarce. The goal of this study was to establish reference ranges for hematological and biochemical parameters of Mazama gouazoubira, comparing differences during the seasons of the year and between sex. Blood samples from ten adult healthy brown brocket deer (6 female and 4 male) were collected during daytime, monthly, during 12 months. The animals were maintained in individual stable, protected from noise and fed ad libitum with commercial ration and green fodder. For blood collection, animals were submitted to physical restrain for no longer than 2 minutes. The following parameters were determined: red blood cell count (RBC), haemoglobin concentration, packed cell volume (PCV), mean corpuscular volume (MCV), mean corpuscular haemoglobin (MCH), mean corpuscular haemoglobin concentration (MCHC), white blood cell count (WBC), platelet count, enzyme activity of alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transferase (GGT) and serum levels of alkaline phosphatase (ALP), creatine kinase (CK), total protein (TP), albumin, cholesterol, total calcium, ionic calcium, sodium, potassium, magnesium, triglycerides, creatinine and urea. Values were compared according to season and sex. RBC count, WBC count and MCV suggested seasonal influence. Haemoglobin concentration, PCV and MCV were influenced by sex. Serum concentration of total calcium, ionic calcium, sodium, potassium and magnesium were influenced by season. Serum magnesium was also influenced by sex. The blood parameters herein reported may be useful as reference values for diagnostic and prognostic purposes in captive brown-brocket deer.
Resumo:
A thymidine kinase (tk)-deleted bovine herpesvirus 5 (BoHV-5tkΔ) was previously shown to establish latent infection and reactivate - even poorly - in a sheep model (Cadore et al. 2013). As TK-negative alphaherpesviruses are unlike to reactivate in neural tissue, this study investigated the sites of latency and reactivation by this recombinant in lambs. For this, groups of lambs were inoculated intranasally with the parental BoHV-5 strain (SV-507/99) or with the recombinant BoHV-5tkΔ. During latent infection (40 days post-inoculation, pi), the distribution of recombinant virus DNA in neural and non-neural tissues was similar to that of the parental virus. Parental and recombinant virus DNA was consistently detected by PCR in trigeminal ganglia (TGs); frequently in palatine and pharyngeal tonsils and, less frequently in the retropharyngeal lymph nodes. In addition, latent DNA of both viruses was detected in several areas of the brain. After dexamethasone (Dx) administration (day 40pi), the recombinant virus was barely detected in nasal secretions contrasting with marked shedding of the parental virus. In tissues of lambs euthanized at day 3 post-Dx treatment (pDx), reverse-transcription-PCR (RT-PCR) for a late viral mRNA (glycoprotein D gene) demonstrated reactivation of parental virus in neural (TGs) and lymphoid tissues (tonsils, lymph node). In contrast, recombinant virus mRNA was detected only in lymphoid tissues. These results demonstrate that BoHV-5 and the recombinant BoHV-5tkΔ do establish latent infection in neural and non-neural sites. Reactivation of the recombinant BoHV-5tkΔ, however, appeared to occur only in non-neural sites. In anyway, the ability of a tk-deleted strain to reactivate latent infection deserves attention in the context of vaccine safety.
Resumo:
The modification of pyruvate kinase (PK) and lactate dehydrogenase (LDH) activity in foot muscle of the mussel Mytilus galloprovincialis during exposure to air and recovery in water was investigated. In the course of exposure to air, the activity of these enzymes measured at high and low substrate concentrations showed successive increases and decreases. Returning the mussels to water after exposure to air affected enzyme activity in a manner similar to anaerobiosis. When measuring at saturated concentrations of substrates and substrate and coenzyme for PK and LDH, respectively, the maximum activation of PK (37%) was observed at 4 h of animal exposure to air, and for LDH (67%) at 6 h exposure to air. During 24 h of exposure of animals to air, PK activity practically reached the stock level, while LDH was still activated (148%). The change in lactate dehydrogenase activity in mussel muscle during anoxia and recovery is described here for the first time. Variation in pyruvate kinase activity during exposure to air and recovery is linked to the alteration of half-maximal saturation constants and maximal velocity for both substrates. The possible role of reversible phosphorylation in the regulation of pyruvate kinase and lactate dehydrogenase properties is discussed