73 resultados para CONSTANT-LOAD EXERCISE
em Scielo Saúde Pública - SP
Resumo:
This study evaluated the dynamic behavior of total and compartmental chest wall volumes [(V CW) = rib cage (V RC) + abdomen (V AB)] as measured breath-by-breath by optoelectronic plethysmography during constant-load exercise in patients with stable chronic obstructive pulmonary disease. Thirty males (GOLD stages II-III) underwent a cardiopulmonary exercise test to the limit of tolerance (Tlim) at 75% of peak work rate on an electronically braked cycle ergometer. Exercise-induced dynamic hyperinflation was considered to be present when end-expiratory (EE) V CW increased in relation to resting values. There was a noticeable heterogeneity in the patterns of V CW regulation as EEV CW increased non-linearly in 17/30 "hyperinflators" and decreased in 13/30 "non-hyperinflators" (P < 0.05). EEV AB decreased slightly in 8 of the "hyperinflators", thereby reducing and slowing the rate of increase in end-inspiratory (EI) V CW (P < 0.05). In contrast, decreases in EEV CW in the "non-hyperinflators" were due to the combination of stable EEV RC with marked reductions in EEV AB. These patients showed lower EIV CW and end-exercise dyspnea scores but longer Tlim than their counterparts (P < 0.05). Dyspnea increased and Tlim decreased non-linearly with a faster rate of increase in EIV CW regardless of the presence or absence of dynamic hyperinflation (P < 0.001). However, no significant between-group differences were observed in metabolic, pulmonary gas exchange and cardiovascular responses to exercise. Chest wall volumes are continuously regulated during exercise in order to postpone (or even avoid) their migration to higher operating volumes in patients with COPD, a dynamic process that is strongly dependent on the behavior of the abdominal compartment.
Resumo:
Resistance training increases muscle strength in older adults, decreasing the effort necessary for executing physical tasks, and reducing cardiovascular load during exercise. This hypothesis has been confirmed during strength-based activities, but not during aerobic-based activities. This study determined whether different resistance training regimens, strength training (ST, constant movement velocity) or power training (PT, concentric phase performed as fast as possible) can blunt the increase in cardiovascular load during an aerobic stimulus. Older adults (63.9 ± 0.7 years) were randomly allocated to: control (N = 11), ST (N = 13, twice a week, 70-90% 1-RM) and PT (N = 15, twice a week, 30-50% 1-RM) groups. Before and after 16 weeks, oxygen uptake (VO2), systolic blood pressure (SBP), heart rate (HR), and rate pressure product (RPP) were measured during a maximal treadmill test. Resting SBP and RPP were similarly reduced in all groups (combined data = -5.7 ± 1.2 and -5.0 ± 1.7%, respectively, P < 0.05). Maximal SBP, HR and RPP did not change. The increase in measured VO2, HR and RPP for the increment in estimated VO2 (absolute load) decreased similarly in all groups (combined data = -9.1 ± 2.6, -14.1 ± 3.9, -14.2 ± 3.0%, respectively, P < 0.05), while the increments in the cardiovascular variables for the increase in measured VO2 did not change. In elderly subjects, ST and PT did not blunt submaximal or maximal HR, SBP and RPP increases during the maximal exercise test, showing that they did not reduce cardiovascular stress during aerobic tasks.
Resumo:
In the State of Amazonas, Brazil, urban expansion together with precarious basic sanitation conditions and human settlement on river banks has contributed to the persistence of waterborne and intestinal parasitic diseases. Time series of the recorded cases of cholera, typhoid fever, hepatitis A and leptospirosis are described, using data from different levels of the surveillance systems. The sources for intestinal parasitosis prevalence data (non-compulsory reporting in Brazil) were Medical Literature Analysis and Retrieval System Online (MEDLINE), Literatura Latino-Americana (LILACS) and the annals of major scientific meetings. Relevant papers and abstracts in all languages were accessed by two independent reviewers. The references cited by each relevant paper were scrutinized to locate additional papers. Despite its initial dissemination across the entire State of Amazonas, cholera was controlled in 1998. The magnitude of typhoid fever has decreased; however, a pattern characterized by eventual outbreaks still remains. Leptospirosis is an increasing cause of concern in association with the annual floods. The overall prevalence of intestinal parasites is high regardless of the municipality and the characteristics of areas and populations. The incidence of hepatitis A has decreased over the past decade. A comparison of older and recent surveys shows that the prevalence of intestinal parasitic diseases has remained constant. The load of waterborne and intestinal parasitic diseases ranks high among the health problems present in the State of Amazonas. Interventions aiming at basic sanitation and vaccination for hepatitis A were formulated and implemented, but assessment of their effectiveness in the targeted populations is still needed.
Resumo:
OBJECTIVE: To compare gas exchange at rest and during exercise in patients with chronic Chagas' heart disease grouped according to the Los Andes clinical/hemodynamic classification. METHODS: We studied 15 healthy volunteers and 52 patients grouped according to the Los Andes clinical/hemodynamic classification as follows: 17 patients in group IA (normal electrocardiogram/echocardiogram), 9 patients in group IB (normal electrocardiogram and abnormal echocardiogram), 14 patients in group II (abnormal electrocardiogram/echocardiogram, without congestive heart failure), and 12 patients in group III (abnormal electrocardiogram/echocardiogram with congestive heart failure). The following variables were analyzed: oxygen consumption (V O2), carbon dioxide production (V CO2), gas exchange rate (R), inspiratory current volume (V IC), expiratory current volume (V EC), respiratory frequency, minute volume (V E), heart rate (HR), maximum load, O2 pulse, and ventilatory anaerobic threshold (AT). RESULTS: When compared with the healthy group, patients in groups II and III showed significant changes in the following variables: V O2peak, V CO2peak, V ICpeak, V ECpeak, E, HR, and maximum load. Group IA showed significantly better results for these same variables as compared with group III. CONCLUSION: The functional capacity of patients in the initial phase of chronic Chagas' heart disease is higher than that of patients in an advanced phase and shows a decrease that follows the loss in cardiac-hemodynamic performance.
Resumo:
Estimation of soil load-bearing capacity from mathematical models that relate preconsolidation pressure (σp) to mechanical resistance to penetration (PR) and gravimetric soil water content (U) is important for defining strategies to prevent compaction of agricultural soils. Our objective was therefore to model the σp and compression index (CI) according to the PR (with an impact penetrometer in the field and a static penetrometer inserted at a constant rate in the laboratory) and U in a Rhodic Eutrudox. The experiment consisted of six treatments: no-tillage system (NT); NT with chiseling; and NT with additional compaction by combine traffic (passing 4, 8, 10, and 20 times). Soil bulk density, total porosity, PR (in field and laboratory measurements), U, σp, and CI values were determined in the 5.5-10.5 cm and 13.5-18.5 cm layers. Preconsolidation pressure (σp) and CI were modeled according to PR in different U. The σp increased and the CI decreased linearly with increases in the PR values. The correlations between σp and PR and PR and CI are influenced by U. From these correlations, the soil load-bearing capacity and compaction susceptibility can be estimated by PR readings evaluated in different U.
Resumo:
PURPOSE: To determine fetal heart rate (FHR) responses to maternal resistance exercise for the upper and lower body at two different volumes, and after 25 minutes post-exercise.METHODS: Ten pregnant women (22-24 weeks gestation, 25.2±4.4 years of age, 69.8±9.5 kg, 161.6±5.2 cm tall) performed, at 22-24, 28-32 and 34-36 weeks, the following experimental sessions: Session 1 was a familiarization with the equipment and the determination of one estimated maximum repetition. For sessions 2, 3, 4 and 5,FHR was determined during the execution of resistance exercise on bilateral leg extension and pec-deck fly machines, with 1 and 3 sets of 15 repetitions; 50% of the weight load and an estimated repetition maximum. FHR was assessed with a portable digital cardiotocograph. Results were analyzed using Student's ttest, ANOVA with repeated measures and Bonferroni (α=0.05; SPSS 17.0).RESULTS: FHR showed no significant differences between the exercises at 22-24 weeks (bilateral leg extension=143.8±9.4 bpm, pec-deck fly=140.2±10.2 bpm, p=0.34), 28-30 weeks (bilateral leg extension=138.4±12.2 bpm, pec-deck fly=137.6±14.0 bpm, p=0.75) and 34-36 weeks (bilateral leg extension=135.7±5.8 bpm, pec-deck fly=139.7±13.3 bpm, p=0.38), between the volumes(bilateral leg extension at 22-24 weeks: p=0.36, at 28-30 weeks: p=0.19 and at 34-36 weeks: p=0.87; pec-deck fly at 22-24 weeks: p=0.43, at 28-30 weeks: p=0.61 and at 34-36 weeks: p=0.49) and after 25 minutes post-exercise.CONCLUSION: Results of this pilot study would suggest that maternal resistance exercise is safe for the fetus.
Resumo:
We investigated the effects of aerobic training on the efferent autonomic control of heart rate (HR) during dynamic exercise in middle-aged men, eight of whom underwent exercise training (T) while the other seven continued their sedentary (S) life style. The training was conducted over 10 months (three 1-h sessions/week on a field track at 70-85% of the peak HR). The contribution of sympathetic and parasympathetic exercise tachycardia was determined in terms of differences in the time constant effects on the HR response obtained using a discontinuous protocol (4-min tests at 25, 50, 100 and 125 watts on a cycle ergometer), and a continuous protocol (25 watts/min until exhaustion) allowed the quantification of the parameters (anaerobic threshold, VO2 AT; peak O2 uptake, VO2 peak; power peak) that reflect oxygen transport. The results obtained for the S and the T groups were: 1) a smaller resting HR in T (66 beats/min) when compared to S (84 beats/min); 2) during exercise, a small increase in the fast tachycardia (D0-10 s) related to vagal withdrawal (P<0.05, only at 25 watts) was observed in T at all powers; at middle and higher powers a significant decrease (P<0.05 at 50, 100 and 125 watts) in the slow tachycardia (D1-4 min) related to a sympathetic-dependent mechanism was observed in T; 3) the VO2 AT (S = 1.06 and T = 1.33 l/min) and VO2 peak (S = 1.97 and T = 2.47 l/min) were higher in T (P<0.05). These results demonstrate that aerobic training can induce significant physiological adaptations in middle-aged men, mainly expressed as a decrease in the sympathetic effects on heart rate associated with an increase in oxygen transport during dynamic exercise.
Resumo:
Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%). Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58%) only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25%) and myocyte dimension (13-20%) increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.
Resumo:
The maximal lactate steady state (MLSS) is the highest blood lactate concentration that can be identified as maintaining a steady state during a prolonged submaximal constant workload. The objective of the present study was to analyze the influence of the aerobic capacity on the validity of anaerobic threshold (AT) to estimate the exercise intensity at MLSS (MLSS intensity) during cycling. Ten untrained males (UC) and 9 male endurance cyclists (EC) matched for age, weight and height performed one incremental maximal load test to determine AT and two to four 30-min constant submaximal load tests on a mechanically braked cycle ergometer to determine MLSS and MLSS intensity. AT was determined as the intensity corresponding to 3.5 mM blood lactate. MLSS intensity was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. MLSS intensity (EC = 282.1 ± 23.8 W; UC = 180.2 ± 24.5 W) and AT (EC = 274.8 ± 24.9 W; UC = 187.2 ± 28.0 W) were significantly higher in trained group. However, there was no significant difference in MLSS between EC (5.0 ± 1.2 mM) and UC (4.9 ± 1.7 mM). The MLSS intensity and AT were not different and significantly correlated in both groups (EC: r = 0.77; UC: r = 0.81). We conclude that MLSS and the validity of AT to estimate MLSS intensity during cycling, analyzed in a cross-sectional design (trained x sedentary), do not depend on the aerobic capacity.
Resumo:
The present study evaluated whether the luteal phase elevation of body temperature would be offset during exercise by increased sweating, when women are normally hydrated. Eleven women performed 60 min of cycling exercise at 60% of their maximal work load at 32ºC and 80% relative air humidity. Each subject participated in two identical experimental sessions: one during the follicular phase (between days 5 and 8) and the other during the luteal phase (between days 22 and 25). Women with serum progesterone >3 ng/mL, in the luteal phase were classified as group 1 (N = 4), whereas the others were classified as group 2 (N = 7). Post-exercise urine volume (213 ± 80 vs 309 ± 113 mL) and specific urine gravity (1.008 ± 0.003 vs 1.006 ± 0.002) changed (P < 0.05) during the luteal phase compared to the follicular phase in group 1. No menstrual cycle dependence was observed for these parameters in group 2. Sweat rate was higher (P < 0.05) in the luteal (3.10 ± 0.81 g m-2 min-1) than in the follicular phase (2.80 ± 0.64 g m-2 min-1) only in group 1. During exercise, no differences related to menstrual cycle phases were seen in rectal temperature, heart rate, rate of perceived exertion, mean skin temperature, and pre- and post-exercise body weight. Women exercising in a warm and humid environment with water intake seem to be able to adapt to the luteal phase increase of basal body temperature through reduced urinary volume and increased sweating rate.
Resumo:
Subjects with chronic obstructive pulmonary disease (COPD) present breathing pattern and thoracoabdominal motion abnormalities that may contribute to exercise limitation. Twenty-two men with stable COPD (FEV1 = 42.6 ± 13.5% predicted; age 68 ± 8 years; mean ± SD) on usual medication and with at least 5 years of diagnosis were evaluated at rest and during an incremental cycle exercise test (10 watts/2 min). Changes in respiratory frequency, tidal volume, rib cage and abdominal motion contribution to tidal volume and the phase angle that measures the asynchrony were analyzed by inductive respiratory plethysmography at rest and during three levels of exercise (30-50, 70-80, and 100% maximal work load). Repeated measures ANOVA followed by pre-planned contrasts and Bonferroni corrections were used for analyses. As expected, the greater the exercise intensity the higher the tidal volume and respiratory frequency. Abdominal motion contributed to the tidal volume increase (rest: 49.82 ± 11.19% vs exercise: 64.15 ± 9.7%, 63.41 ± 10%, and 65.56 ± 10.2%, respectively, P < 0.001) as well as the asynchrony [phase angle: 11.95 ± 7.24° at rest vs 22.2 ± 15° (P = 0.002), 22.6 ± 9° (P < 0.001), and 22.7 ± 8° (P < 0.001), respectively, at the three levels of exercise]. In conclusion, the increase in ventilation during exercise in COPD patients was associated with the major motion of the abdominal compartment and with an increase in the asynchrony independent of exercise intensity. It suggests that cycling exercise is an effective way of enhancing ventilation in COPD patients.
Resumo:
This study examined the effects of pre-exercise carbohydrate availability on the time to exhaustion for moderate and heavy exercise. Seven men participated in a randomized order in two diet and exercise regimens each lasting 3 days with a 1-week interval for washout. The tests were performed at 50% of the difference between the first (LT1) and second (LT2) lactate breakpoint for moderate exercise (below LT2) and at 25% of the difference between the maximal load and LT2 for heavy exercise (above LT2) until exhaustion. Forty-eight hours before each experimental session, subjects performed a 90-min cycling exercise followed by 5-min rest periods and a subsequent 1-min cycling bout at 125% VO2max/1-min rest periods until exhaustion to deplete muscle glycogen. A diet providing 10% (CHOlow) or 65% (CHOmod) energy as carbohydrates was consumed for 2 days until the day of the experimental test. In the exercise below LT2, time to exhaustion did not differ between the CHOmod and the CHOlow diets (57.22 ± 24.24 vs 57.16 ± 25.24 min). In the exercise above LT2, time to exhaustion decreased significantly from 23.16 ± 8.76 min on the CHOmod diet to 18.30 ± 5.86 min on the CHOlow diet (P < 0.05). The rate of carbohydrate oxidation, respiratory exchange ratio and blood lactate concentration were reduced for CHOlow only during exercise above LT2. These results suggest that muscle glycogen depletion followed by a period of a low carbohydrate diet impairs high-intensity exercise performance.
Resumo:
Androgenic anabolic steroid, physical exercise and stress induce cardiovascular adaptations including increased endothelial function. The present study investigated the effects of these conditions alone and in combination on the vascular responses of male Wistar rats. Exercise was started at 8 weeks of life (60-min swimming sessions 5 days per week for 8 weeks, while carrying a 5% body-weight load). One group received nandrolone (5 mg/kg, twice per week for 8 weeks, im). Acute immobilization stress (2 h) was induced immediately before the experimental protocol. Curves for noradrenaline were obtained for thoracic aorta, with and without endothelium from sedentary and trained rats, submitted or not to stress, treated or not with nandrolone. None of the procedures altered the vascular reactivity to noradrenaline in denuded aorta. In intact aorta, stress and exercise produced vascular adaptive responses characterized by endothelium-dependent hyporeactivity to noradrenaline. These conditions in combination did not potentiate the vascular adaptive response. Exercise-induced vascular adaptive response was abolished by nandrolone. In contrast, the aortal reactivity to noradrenaline of sedentary rats and the vascular adaptive response to stress of sedentary and trained rats were not affected by nandrolone. Maximum response for 7-10 rats/group (g): sedentary 3.8 ± 0.2 vs trained 3.0 ± 0.2*; sedentary/stress 2.7 ± 0.2 vs trained/stress 3.1 ± 0.1*; sedentary/nandrolone 3.6 ± 0.1 vs trained/nandrolone 3.8 ± 0.1; sedentary/stress/nandrolone 3.2 ± 0.1 vs trained/stress/nandrolone 2.5 ± 0.1*; *P < 0.05 compared to its respective control. Stress and physical exercise determine similar vascular adaptive response involving distinct mechanisms as indicated by the observation that only the physical exercise-induced adaptive response was abolished by nandrolone.
Resumo:
A single bout of resistance exercise (RE) induces hormonal and immune responses, playing an important role in a long-term adaptive process. Whole-body vibration (WBV) has also been shown to affect hormonal responses. Evidence suggests that combining WBV with RE may amplify hormonal and immune responses due to the increased neuromuscular load. Therefore, the aim of this study was to evaluate salivary cortisol (Scortisol) and salivary IgA (SIgA) concentrations following a RE session combined or not with WBV. Nine university students (22.9 ± 5.1 years, 175.8 ± 5.2 cm, and 69.2 ± 7.3 kg) performed five sets of squat exercise (70% one-repetition-maximum) combined (R+V30) or not (R) with WBV at 30 Hz. Saliva samples were obtained before and after exercise. Subjects also rated their effort according to the Borg CR-10 scale (RPE). Data were analyzed by a mixed model. RPE was higher after R+V30 (8.3 ± 0.7) compared to R (6.2 ± 0.7). However, Scortisol (pre: 10.6 ± 7.6 and 11.7 ± 7.6, post: 8.3 ± 6.3 and 10.2 ± 7.2 ng/mL for R and R+V30, respectively) and SIgA concentrations (pre: 98.3 ± 22.6 and 116.1 ± 51.2, post: 116.6 ± 64.7 and 143.6 ± 80.5 µg/mL for R and R+V30, respectively) were unaffected. No significant correlations were observed between Scortisol and RPE (r = 0.45, P = 0.22; r = 0.30, P = 0.42, for R and R+V30, respectively). On the basis of these data, neither protocol modified salivary cortisol or IgA, although RPE was higher after R+V30 than R.
Resumo:
The purpose of this study was to investigate the behavior of heart rate (HR) and HR variability (HRV) during different loads of resistance exercise (incline bench press) in patients with coronary artery disease (CAD) and healthy sedentary controls. Ten healthy men (65 ± 1.2 years, control group, CG) and 10 men with clinically stable CAD (66 ± 2.4 years, CADG) were recruited. A discontinuous progressive protocol was applied with an initial load of 10% of the maximum load achieved in the 1RM (1 repetition maximum) with increases of 10% until 30% 1RM was reached, which was followed by subsequent increases of 5% 1RM until exhaustion. HRV was analyzed by linear and non-linear methods. There was a significant reduction in rMSSD (CG: 20 ± 2 to 11 ± 3 ms; CADG: 19 ± 3 to 9 ± 1 ms) and SD1 indexes (CG: 14 ± 2 to 8 ± 1 ms; CADG: 14 ± 2 to 7 ± 1 ms). An increase in HR (CG: 69 ± 5 to 90 ± 5 bpm; CADG: 62 ± 4 to 75 ± 4 bpm) and in systolic blood pressure (CG: 124 ± 3 to 138 ± 3 mmHg; CADG: 122 ± 6 to 126 ± 9 bpm) were observed (P < 0.05) when comparing pre-effort rest and 40% 1RM in both groups. Furthermore, an increase in RMSM index was also observed (CG: 28 ± 3 to 45 ± 9 ms; CADG: 22 ± 2 to 79 ± 33 ms), with higher values in CADG. We conclude that loads up to 30% 1RM during incline bench press result in depressed vagal modulation in both groups, although only stable CAD patients presented sympathetic overactivity at 20% 1RM upper limb exercise.