12 resultados para CHELATOR

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pretreatment of Escherichia coli cultures with the iron chelator 2,2’-dipyridyl (1 mM) protects against the lethal effects of low concentrations of hydrogen peroxide (<15 mM). However, at H2O2 concentrations equal to or greater than 15 mM, dipyridyl pretreatment increases lethality and mutagenesis, which is attributed to the formation of different types of DNA lesions. We show here that pretreatment with dipyridyl (1 mM) prior to challenge with high H2O2 concentrations (≥15 mM) induced mainly G:C→A:T transitions (more than 100X with 15 mM and more than 250X with 20 mM over the spontaneous mutagenesis rate) in E. coli. In contrast, high H2O2 concentrations in the absence of dipyridyl preferentially induced A:T→T:A transversions (more than 1800X and more than 300X over spontaneous mutagenesis for 15 and 20 mM, respectively). We also show that in the fpg nth double mutant, the rpoB gene mutation (RifS-RifR) induced by 20 mM H2O2 alone (20X higher) was increased in 20 mM H2O2 and dipyridyl-treated cultures (110X higher), suggesting additional and/or different lesions in cells treated with H2O2 under iron deprivation. It is suggested that, upon iron deprivation, cytosine may be the main damaged base and the origin of the pre-mutagenic lesions induced by H2O2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms used by Paracoccidioides brasiliensis to survive into phagocytic cells are not clear. Cellular iron metabolism is of critical importance to the growth of several intracellular pathogens whose capacity to multiply in mononuclear phagocytes is dependent on the availability of intracellular iron. Thus, the objective of this paper was to investigate the role of intracellular iron in regulating the capacity of P. brasiliensis yeast cells to survive within human monocytes. Treatment of monocytes with deferoxamine, an iron chelator, suppressed the survival of yeasts in a concentration-dependent manner. The effect of deferoxamine was reversed by iron-saturated transferrin (holotransferrin) but not by nonsaturated transferrin (apotransferrin). These results strongly suggest that P. brasiliensis survival in human monocytes is iron dependent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trypanosoma cruzi, the protozoan responsible for Chagas disease, employs distinct strategies to invade mammalian host cells. In the present work we investigated the participation of calcium ions on the invasion process using primary cultures of embryonic mice cardiomyocytes which exhibit spontaneous contraction in vitro. Using Fura 2-AM we found that T. cruzi was able to induce a sustained increase in basal intracellular Ca2+ level in heart muscle cells (HMC), the response being associated or not with Ca2+ transient peaks. Assays performed with both Y and CL strains indicated that the changes in intracellular Ca2+ started after parasites contacted with the cardiomyocytes and the evoked response was higher than the Ca2+ signal associated to the spontaneous contractions. The possible role of the extracellular and intracellular Ca2+ levels on T. cruzi invasion process was evaluated using the extracellular Ca2+ chelator EGTA alone or in association with the calcium ionophore A23187. Significant dose dependent inhibition of the invasion levels were found when intracellular calcium release was prevented by the association of EGTA +A23187 in calcium free medium. Dose response experiments indicated that EGTA 2.5 mM to 5 mM decreased the invasion level by 15.2 to 35.1% while A23187 (0.5 µM) alone did not induce significant effects (17%); treatment of the cultures with the protease inhibitor leupeptin did not affect the endocytic index, thus arguing against the involvement of leupeptin sensitive proteases in the invasion of HMC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cytokines are a heterogeneous group of molecules that have been associated with several functions in the nervous system, such as survival and differentiation of neuronal and glial cells. In the present study, we demonstrated that conditioned medium from spleen cells activated with concanavalin A increased neuritogenesis and survival of retinal cells, as measured by biochemical and morphological criteria. Our data showed that conditioned medium induced a five-fold increase in the amount of protein after 120 h in vitro. This effect was not inhibited by the blockade of voltage-dependent L-type calcium channels with 5.0 µM nifedipine. However, the use of an intracellular calcium chelator (15.0 µM BAPTA-AM) inhibited this effect. Our results support the idea that factors secreted by activated lymphocytes, such as cytokines, can modulate the maintenance and the differentiation of rat retinal cells in vitro, indicating a possible role of these molecules in the development of retinal cells, as well as in its protection against pathological conditions

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have studied the effect of peroxynitrite (ONOO-) on the membrane cytoskeleton of red blood cells and its protection by melatonin. Analysis of the protein fraction of the preparation by SDS-PAGE revealed a dose-dependent (0-600 µM ONOO-) disappearance at pH 7.4 of the main proteins: spectrin, band 3, and actin, with the concomitant formation of high-molecular weight aggregates resistant to reduction by ß-mercaptoethanol (2%) at room temperature for 20 min. These aggregates were not solubilized by 8 M urea. Incubation of the membrane cytoskeleton with ONOO- was characterized by a marked depletion of free sulfhydryl groups (50% at 250 µM ONOO-). However, a lack of effect of ß-mercaptoethanol suggests that, under our conditions, aggregate formation is not mediated only by sulfhydryl oxidation. The lack of a protective effect of the metal chelator diethylenetriaminepentaacetic acid confirmed that ONOO--induced oxidative damage does not occur only by a transition metal-dependent mechanism. However, we demonstrated a strong protection against cytoskeletal alterations by desferrioxamine, which has been described as a direct scavenger of the protonated form of peroxynitrite. Desferrioxamine (0.5 mM) also inhibited the loss of tryptophan fluorescence observed when the ghosts were treated with ONOO-. Glutathione, cysteine, and Trolox® (1 mM), but not mannitol (100 mM), were able to protect the proteins against the effect of ONOO- in a dose-dependent manner. Melatonin (0-1 mM) was especially efficient in reducing the loss of spectrin proteins when treated with ONOO- (90% at 500 µM melatonin). Our findings show that the cytoskeleton, and in particular spectrin, is a sensitive target for ONOO-. Specific antioxidants can protect against such alterations, which could seriously impair cell dynamics and generate morphological changes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Natural cell death is a well-known degenerative phenomenon occurring during development of the nervous system. The role of trophic molecules produced by target and afferent cells as well as by glial cells has been extensively demonstrated. Literature data demonstrate that cAMP can modulate the survival of neuronal cells. Cultures of mixed retinal cells were treated with forskolin (an activator of the enzyme adenylyl cyclase) for 48 h. The results show that 50 µM forskolin induced a two-fold increase in the survival of retinal ganglion cells (RGCs) in the absence of exogenous trophic factors. This effect was dose dependent and abolished by 1 µM H89 (an inhibitor of protein kinase A), 1.25 µM chelerythrine chloride (an inhibitor of protein kinase C), 50 µM PD 98059 (an inhibitor of MEK), 25 µM Ly 294002 (an inhibitor of phosphatidylinositol-3 kinase), 30 nM brefeldin A (an inhibitor of polypeptide release), and 10 µM genistein or 1 ng/ml herbimycin (inhibitors of tyrosine kinase enzymes). The inhibition of muscarinic receptors by 10 µM atropine or 1 µM telenzepine also blocked the effect of forskolin. When we used 25 µM BAPTA, an intracellular calcium chelator, as well as 20 µM 5-fluoro-2'-deoxyuridine, an inhibitor of cell proliferation, we also abolished the effect. Our results indicate that cAMP plays an important role controlling the survival of RGCs. This effect is directly dependent on M1 receptor activation indicating that cholinergic activity mediates the increase in RGC survival. We propose a model which involves cholinergic amacrine cells and glial cells in the increase of RGC survival elicited by forskolin treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of the present study was to identify noninvasive methods to evaluate the severity of iron overload in transfusion-dependent ß-thalassemia and the efficiency of intensive intravenous therapy as an additional tool for the treatment of iron-overloaded patients. Iron overload was evaluated for 26 ß-thalassemia homozygous patients, and 14 of them were submitted to intensive chelation therapy with high doses of intravenous deferoxamine (DF). Patients were classified into six groups of increasing clinical severity and were divided into compliant and non-compliant patients depending on their adherence to chronic chelation treatment. Several methods were used as indicators of iron overload. Total gain of transfusion iron, plasma ferritin, and urinary iron excretion in response to 20 to 60 mg/day subcutaneous DF for 8 to 12 h daily are useful to identify iron overload; however, urinary iron excretion in response to 9 g intravenous DF over 24 h and the increase of urinary iron excretion induced by high doses of the chelator are more reliable to identify different degrees of iron overload because of their correlation with the clinical grades of secondary hemochromatosis and the significant differences observed between the groups of compliant and non-compliant patients. Finally, the use of 3-9 g intravenous DF for 6-12 days led to a urinary iron excretion corresponding to 4.1 to 22.4% of the annual transfusion iron gain. Therefore, continuous intravenous DF at high doses may be an additional treatment for these patients, as a complement to the regular subcutaneous infusion at home, but requires individual planning and close monitoring of adverse reactions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Although much is known about the molecules involved in extracellular Ca2+ regulation, the relationship of the ion with overall cell morphology is not understood. The objective of the present study was to determine the effect of the Ca2+ chelator EGTA on the major cytoskeleton components, at integrin-containing adhesion sites, and their consequences on cell shape. Control mouse cell line C2C12 has a well-spread morphology with long stress fibers running in many different directions, as detected by fluorescence microscopy using rhodamine-phalloidin. In contrast, cells treated with EGTA (1.75 mM in culture medium) for 24 h became bipolar and showed less stress fibers running in one major direction. The adhesion plaque protein alpha5-integrin was detected by immunofluorescence microscopy at fibrillar adhesion sites in both control and treated cells, whereas a dense labeling was seen only inside treated cells. Microtubules shifted from a radial arrangement in control cells to a longitudinal distribution in EGTA-treated cells, as analyzed by immunofluorescence microscopy. Desmin intermediate filaments were detected by immunofluorescence microscopy in a fragmented network dispersed within the entire cytoplasm in EGTA-treated cells, whereas a dense network was seen in the whole cytoplasm of control cells. The present results suggest that the role of extracellular Ca2+ in the regulation of C2C12 cell shape can be mediated by actin-containing stress fibers and microtubules and by intermediate filament reorganization, which may involve integrin adhesion sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

8-Methoxy psoralen (8-MOP) exerts a short-term (24 h) mitogenic action, and a long-term (48-72 h) anti-proliferative and melanogenic action on two human melanoma cell lines, SK-Mel 28 and C32TG. An increase of intracellular calcium concentration was observed by spectrofluorometry immediately after the addition of 0.1 mM 8-MOP to both cell lines, previously incubated with calcium probe fluo-3 AM (5 µM). The intracellular Ca2+ chelator BAPTA/AM (1 µM) blocked both early (mitogenic) and late (anti-proliferative and melanogenic) 8-MOP effects on both cell lines, thus revealing the importance of the calcium signal in both short- and long-term 8-MOP-evoked responses. Long-term biological assays with 5 and 10 mM tetraethylammonium chloride (TEA, an inhibitor of Ca2+-dependent K+ channels) did not affect the responses to psoralen; however, in 24-h assays 10 mM TEA blocked the proliferative peak, indicating a modulation of Ca2+-dependent K+ channels by 8-MOP. No alteration of cAMP basal levels or forskolin-stimulated cAMP levels was promoted by 8-MOP in SK-Mel 28 cells, as determined by radioimmunoassay. However, in C32TG cells forskolin-stimulated cAMP levels were further increased in the presence of 8-MOP. In addition, assays with 1 µM protein kinase C and calcium/calmodulin-dependent kinase inhibitors, Ro 31-8220 and KN-93, respectively, excluded the participation of these kinases in the responses evoked by 8-MOP. Western blot with antibodies anti-phosphotyrosine indicated a 92% increase of the phosphorylated state of a 43-kDa band, suggesting that the phosphorylation of this protein is a component of the cascade that leads to the increase of tyrosinase activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our hypothesis is that iron accumulated in tissue, rather than in serum, may compromise cardiovascular control. Male Fischer 344 rats weighing 180 to 220 g were divided into 2 groups. In the serum iron overload group (SIO, N = 12), 20 mg elemental iron was injected ip daily for 7 days. In the tissue iron overload group (TIO, N = 19), a smaller amount of elemental iron was injected (10 mg, daily) for 5 days followed by a resting period of 7 days. Reflex heart rate responses were elicited by iv injections of either phenylephrine (0.5 to 5.0 µg/kg) or sodium nitroprusside (1.0 to 10.0 µg/kg). Baroreflex curves were determined and fitted to sigmoidal equations and the baroreflex gain coefficient was evaluated. To evaluate the role of other than a direct effect of iron on tissue, acute treatment with the iron chelator deferoxamine (20 mg/kg, iv) was performed on the TIO group and the baroreflex was re-evaluated. At the end of the experiments, evaluation of iron levels in serum confirmed a pronounced overload for the SIO group (30-fold), in contrast to the TIO group (2-fold). Tissue levels of iron, however, were higher in the TIO group. The SIO protocol did not produce significant alterations in the baroreflex curve response, while the TIO protocol produced a nearly 2-fold increase in baroreflex gain (-4.34 ± 0.74 and -7.93 ± 1.08 bpm/mmHg, respectively). The TIO protocol animals treated with deferoxamine returned to sham levels of baroreflex gain (-3.7 ± 0.3 sham vs -3.6 ± 0.2 bpm/mmHg) 30 min after the injection. Our results indicate an effect of tissue iron overload on the enhancement of baroreflex sensitivity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Desmin is the main intermediate filament (IF) protein of muscle cells. In skeletal muscle, desmin IFs form a scaffold that interconnects the entire contractile apparatus with the subsarcolemmal cytoskeleton and cytoplasmic organelles. The interaction between desmin and the sarcolemma is mediated by a number of membrane proteins, many of which are Ca2+-sensitive. In the present study, we analyzed the effects of the Ca2+ chelator EGTA (1.75 mM) on the expression and distribution of desmin in C2C12 myoblasts grown in culture. We used indirect immunofluorescence microscopy and reverse transcription polymerase chain reaction (RT-PCR) to analyze desmin distribution and expression in C2C12 cells grown in the presence or absence of EGTA. Control C2C12 myoblasts showed a well-spread morphology after a few hours in culture and became bipolar when grown for 24 h in the presence of EGTA. Control C2C12 cells showed a dense network of desmin from the perinuclear region to the cell periphery, whereas EGTA-treated cells showed desmin aggregates in the cytoplasm. RT-PCR analysis revealed a down-regulation of desmin expression in EGTA-treated C2C12 cells compared to untreated cells. The present results suggest that extracellular Ca2+ availability plays a role in the regulation of desmin expression and in the spatial distribution of desmin IFs in myoblasts, and is involved in the generation and maintenance of myoblast cell shape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated whether Ca2+/calmodulin-dependent kinase II (CaMKII) and calcineurin (CaN) are involved in myocardial hypertrophy induced by tumor necrosis factor α (TNF-α). The cardiomyocytes of neonatal Wistar rats (1-2 days old) were cultured and stimulated by TNF-α (100 μg/L), and Ca2+ signal transduction was blocked by several antagonists, including BAPTA (4 µM), KN-93 (0.2 µM) and cyclosporin A (CsA, 0.2 µM). Protein content, protein synthesis, cardiomyocyte volumes, [Ca2+]i transients, CaMKIIδB and CaN were evaluated by the Lowry method, [³H]-leucine incorporation, a computerized image analysis system, a Till imaging system, and Western blot analysis, respectively. TNF-α induced a significant increase in protein content in a dose-dependent manner from 10 µg/L (53.56 µg protein/well) to 100 μg/L (72.18 µg protein/well), and in a time-dependent manner from 12 h (37.42 µg protein/well) to 72 h (42.81 µg protein/well). TNF-α (100 μg/L) significantly increased the amplitude of spontaneous [Ca2+]i transients, the total protein content, cell size, and [³H]-leucine incorporation in cultured cardiomyocytes, which was abolished by 4 µM BAPTA, an intracellular Ca2+ chelator. The increases in protein content, cell size and [³H]-leucine incorporation were abolished by 0.2 µM KN-93 or 0.2 µM CsA. TNF-α increased the expression of CaMKIIδB by 35.21% and that of CaN by 22.22% compared to control. These effects were abolished by 4 µM BAPTA, which itself had no effect. These results suggest that TNF-α induces increases in [Ca2+]i, CaMKIIδB and CaN and promotes cardiac hypertrophy. Therefore, we hypothesize that the Ca2+/CaMKII- and CaN-dependent signaling pathways are involved in myocardial hypertrophy induced by TNF-α.