30 resultados para CGMP
em Scielo Saúde Pública - SP
Resumo:
The effects induced by nitric oxide (NO) in different tissues depend on direct and/or indirect interactions with K+ channels. The indirect interaction of NO is produced by activation of guanylyl cyclase which increases the intracellular cGMP. Since NO, cGMP and 4-aminopyridine alone induce tetanic fade and increase amplitude of muscular contractions in isolated rat neuromuscular preparations, the present study was undertaken to determine whether or not the neuromuscular effects of NO and 8-Br-cGMP can be modified by 4-aminopyridine. Using the phrenic nerve and diaphragm muscle isolated from male Wistar rats (200-250 g), we observed that L-arginine (4.7 mM) and 8-Br-cGMP (18 µM), in contrast to D-arginine, induced an increase in the amplitude of muscle contraction (10.5 ± 0.7%, N = 10 and 8.0 ± 0.7%, N = 10) and tetanic fade (15 ± 2.0%, N = 8 and 11.6 ± 1.7%, N = 8) at 0.2 and 50 Hz, respectively. N G-nitro-L-arginine (4 mM, N = 8 and 8 mM, N = 8) antagonized the effects of L-arginine. 4-Aminopyridine (1 and 10 µM) caused a dose-dependent increase in the amplitude of muscle contraction (15 ± 1.8%, N = 9 and 40 ± 3.1%, N = 10) and tetanic fade (17.7 ± 3.3%, N = 8 and 37.4 ± 1.3%, N = 8). 4-Aminopyridine (1 µM, N = 8) did not cause any change in muscle contraction amplitude or tetanic fade of preparations previously paralyzed with d-tubocurarine or stimulated directly. The effects induced by 4-aminopyridine alone were similar to those observed when the drug was administered in combination with L-arginine or 8-Br-cGMP. The data suggest that the blockage of K+ channels produced by 4-aminopyridine inhibits the neuromuscular effects induced by NO and 8-Br-cGMP. Therefore, the presynaptic effects induced by NO seem to depend on indirect interactions with K+ channels.
Resumo:
Implantation of Walker 256 tumor decreases acute systemic inflammation in rats. Inflammatory hyperalgesia is one of the most important events of acute inflammation. The L-arginine/NO/cGMP/K+ATP pathway has been proposed as the mechanism of peripheral antinociception mediated by several drugs and physical exercise. The objective of this study was to investigate a possible involvement of the NO/cGMP/K+ATP pathway in antinociception induced in Walker 256 tumor-bearing male Wistar rats (180-220 g). The groups consisted of 5-6 animals. Mechanical inflammatory hypernociception was evaluated using an electronic version of the von Frey test. Walker tumor (4th and 7th day post-implantation) reduced prostaglandin E2- (PGE2, 400 ng/paw; 50 µL; intraplantar injection) and carrageenan-induced hypernociception (500 µg/paw; 100 µL; intraplantar injection). Walker tumor-induced analgesia was reversed (99.3% for carrageenan and 77.2% for PGE2) by a selective inhibitor of nitric oxide synthase (L-NAME; 90 mg/kg, ip) and L-arginine (200 mg/kg, ip), which prevented (80% for carrageenan and 65% for PGE2) the effect of L-NAME. Treatment with the soluble guanylyl cyclase inhibitor ODQ (100% for carrageenan and 95% for PGE2; 8 µg/paw) and the ATP-sensitive K+ channel (KATP) blocker glibenclamide (87.5% for carrageenan and 100% for PGE2; 160 µg/paw) reversed the antinociceptive effect of tumor bearing in a statistically significant manner (P < 0.05). The present study confirmed an intrinsic peripheral antinociceptive effect of Walker tumor bearing in rats. This antinociceptive effect seemed to be mediated by activation of the NO/cGMP pathway followed by the opening of KATP channels.
Resumo:
Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.
Effects of PDE type 5 inhibitors on Left Ventricular Diastolic Dysfunction in Resistant Hypertension
Resumo:
Resistant hypertension (RHTN) is a multifactorial disease characterized by blood pressure (BP) levels above goal (140/90 mmHg) in spite of the concurrent use of three or more antihypertensive drugs of different classes. Moreover, it is well known that RHTN subjects have high prevalence of left ventricular diastolic dysfunction (LVDD), which leads to increased risk of heart failure progression. This review gathers data from studies evaluating the effects of phosphodiesterase-5 (PDE-5) inhibitors (administration of acute sildenafil and short-term tadalafil) on diastolic function, biochemical and hemodynamic parameters in patients with RHTN. Acute study with sildenafil treatment found that inhibition of PDE-5 improved hemodynamic parameters and diastolic relaxation. In addition, short-term study with the use of tadalafil demonstrated improvement of LVDD, cGMP and BNP-32 levels, regardless of BP reduction. No endothelial function changes were observed in the studies. The findings of acute and short-term studies revealed potential therapeutic effects of IPDE-5 drugs on LVDD in RHTN patients.
Resumo:
Abstract A literature overview of angiographic studies has shown that the prevalence of significant coronary disease in patients with aortic stenosis (AS) varies from 20 to 60%. Early necropsy studies suggested that patients with AS had a lower than expected incidence of coronary artery disease (CAD), originating the concept of a protective effect of AS on the coronary arteries. The myth of AS protection against CAD would be better explained as endothelium-myocardial interaction (crosstalk) protection triggered by left ventricular overload. Therefore, the cGMP/NO pathway induced by the AS overload pressure would explain the low incidence of CAD, which is compatible with the amazing natural long-term evolution of this cardiac valve disease.
Resumo:
Although there are some data concerning the nitric oxide and the cyclic 3'-5'guanosine monophosphate (cGMP) signaling pathway in trypanosomatids, there is no report about the cGMP-dependent enzymatic activity identification. In this sense, a cGMP dependent activity was detected on soluble fraction from Leishmania amazonensis promastigotes with a high metacyclic level. This information is valuable in order to explore the metabolic pathway of G kinase protein in this parasite.
Resumo:
Nesta revisão do sistema nervoso entérico, enfatiza-se o mecanismo da inibição não-adrenérgica e não-colinérgica na contratilidade do sistema digestório. Introduz-se a síntese e metabolismo do óxido nítrico com apresentação das sintases do óxido nítrico. Atualiza-se mostrando o óxido nítrico como neurotransmissor do mecanismo inibitório não-adrenérgico e não-colinérgico, demonstrando sua atividade na musculatura lisa gastrointestinal e possível mecanismo intracelular através da cGMP. Após atualização do mecanismo do peristaltismo e do complexo motor migratório, faz-se uma descrição do íleo adinâmico. Por fim, todo raciocínio apresentado condensa-se na fisiopatologia do íleo adinâmico.
Resumo:
Previous data from our laboratory have indicated that nitric oxide (NO) acting at the presynaptic level increases the amplitude of muscular contraction (AMC) of the phrenic-diaphragm preparations isolated from indirectly stimulated rats, but, by acting at the postsynaptic level, it reduces the AMC when the preparations are directly stimulated. In the present study we investigated the effects induced by NO when tetanic frequencies of stimulation were applied to in vivo preparations (sciatic nerve-anterior tibial muscle of the cat). Intra-arterial injection of NO (0.75-1.5 mg/kg) induced a dose-dependent increase in the Wedensky inhibition produced by high frequencies of stimulation applied to the motor nerve. Intra-arterial administration of 7.2 µg/kg methylene blue did not produce any change in AMC at low frequencies of nerve stimulation (0.2 Hz), but antagonized the NO-induced Wedensky inhibition. The experimental data suggest that NO-induced Wedensky inhibition may be mediated by the guanylate cyclase-cGMP pathway
Resumo:
Guanylin and uroguanylin are peptides that bind to and activate guanylate cyclase C and control salt and water transport in many epithelia in vertebrates, mimicking the action of several heat-stable bacteria enterotoxins. In the kidney, both of them have well-documented natriuretic and kaliuretic effects. Since atrial natriuretic peptide (ANP) also has a natriuretic effect mediated by cGMP, experiments were designed in the isolated perfused rat kidney to identify possible synergisms between ANP, guanylin and uroguanylin. Inulin was added to the perfusate and glomerular filtration rate (GFR) was determined at 10-min intervals. Sodium was also determined. Electrolyte dynamics were measured by the clearance formula. Guanylin (0.5 µg/ml, N = 12) or uroguanylin (0.5 µg/ml, N = 9) was added to the system after 30 min of perfusion with ANP (0.1 ng/ml). The data were compared at 30-min intervals to a control (N = 12) perfused with modified Krebs-Hanseleit solution and to experiments using guanylin and uroguanylin at the same dose (0.5 µg/ml). After previous introduction of ANP in the system, guanylin promoted a reduction in fractional sodium transport (%TNa+, P<0.05) (from 78.46 ± 0.86 to 64.62 ± 1.92, 120 min). In contrast, ANP blocked uroguanylin-induced increase in urine flow (from 0.21 ± 0.01 to 0.15 ± 0.007 ml g-1 min-1, 120 min, P<0.05) and the reduction in fractional sodium transport (from 72.04 ± 0.86 to 85.19 ± 1.48, %TNa+, at 120 min of perfusion, P<0.05). Thus, the synergism between ANP + guanylin and the antagonism between ANP + uroguanylin indicate the existence of different subtypes of receptors mediating the renal actions of guanylins.
Resumo:
Guanylate cyclases (GC) serve in two different signaling pathways involving cytosolic and membrane enzymes. Membrane GCs are receptors for guanylin and atriopeptin peptides, two families of cGMP-regulating peptides. Three subclasses of guanylin peptides contain one intramolecular disulfide (lymphoguanylin), two disulfides (guanylin and uroguanylin) and three disulfides (E. coli stable toxin, ST). The peptides activate membrane receptor-GCs and regulate intestinal Cl- and HCO3- secretion via cGMP in target enterocytes. Uroguanylin and ST also elicit diuretic and natriuretic responses in the kidney. GC-C is an intestinal receptor-GC for guanylin and uroguanylin, but GC-C may not be involved in renal cGMP pathways. A novel receptor-GC expressed in the opossum kidney (OK-GC) has been identified by molecular cloning. OK-GC cDNAs encode receptor-GCs in renal tubules that are activated by guanylins. Lymphoguanylin is highly expressed in the kidney and heart where it may influence cGMP pathways. Guanylin and uroguanylin are highly expressed in intestinal mucosa to regulate intestinal salt and water transport via paracrine actions on GC-C. Uroguanylin and guanylin are also secreted from intestinal mucosa into plasma where uroguanylin serves as an intestinal natriuretic hormone to influence body Na+ homeostasis by endocrine mechanisms. Thus, guanylin peptides control salt and water transport in the kidney and intestine mediated by cGMP via membrane receptors with intrinsic guanylate cyclase activity.
Resumo:
Uroguanylin and guanylin are newly discovered endogenous heat-stable peptides that bind to and activate a membrane bound guanylyl cyclase signaling receptor (termed guanylyl cyclase C; GC-C). These peptides are not only found in blood but are secreted into the lumen of the intestine and effect a net secretion of electrolytes (Na+, K+, Cl-, HCO3-) and fluid into the intestine via a cyclic guanosine-3',5'-monophosphate (cGMP) mechanism. GC-C is also the receptor for Escherichia coli heat-stable enterotoxin (STa) and activation by STa results in a diarrheal illness. Employing mouse renal in vivo models, we have demonstrated that uroguanylin, guanylin, and STa elicit natriuretic, kaliuretic, and diuretic effects. These biological responses are time- and dose-dependent. Maximum natriuretic and kaliuretic effects are observed within 30-40 min following infusion with pharmacological doses of the peptides in a sealed-urethra mouse model. Our mouse renal clearance model confirms these results and shows significant natriuresis following a constant infusion of uroguanylin for 30 min, while the glomerular filtration rate, plasma creatinine, urine osmolality, heart rate, and blood pressure remain constant. These data suggest the peptides act through tubular transport mechanisms. Consistent with a tubular mechanism, messenger RNA-differential display PCR of kidney RNA extracted from vehicle- and uroguanylin-treated mice show the message for the Na+/K+ ATPase g-subunit is down-regulated. Interestingly, GC-C knockout mice (Gucy2c -/-) also exhibit significant uroguanylin-induced natriuresis and kaliuresis in vivo, suggesting the presence of an alternate receptor signaling mechanism in the kidney. Thus, uroguanylin and guanylin seem to serve as intestinal and renal natriuretic peptide-hormones influencing salt and water transport in the kidney through GC-C dependent and independent pathways. Furthermore, our recent clinical probe study has revealed a 70-fold increase in levels of urinary uroguanylin in patients with congestive heart failure. In conclusion, our studies support the concept that uroguanylin and guanylin are endogenous effector peptides involved in regulating body salt and water homeostasis.
Resumo:
Targeted disruption of the neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) genes has led to knockout mice that lack these isoforms. These animal models have been useful to study the roles of nitric oxide (NO) in physiologic processes. nNOS knockout mice have enlarged stomachs and defects in the inhibitory junction potential involved in gastrointestinal motility. eNOS knockout mice are hypertensive and lack endothelium-derived relaxing factor activity. When these animals are subjected to models of focal ischemia, the nNOS mutant mice develop smaller infarcts, consistent with a role for nNOS in neurotoxicity following cerebral ischemia. In contrast, eNOS mutant mice develop larger infarcts, and show a more pronounced hemodynamic effect of vascular occlusion. The knockout mice also show that nNOS and eNOS isoforms differentially modulate the release of neurotransmitters in various regions of the brain. eNOS knockout mice respond to vessel injury with greater neointimal proliferation, confirming that reduced NO levels seen in endothelial dysfunction change the vessel response to injury. Furthermore, eNOS mutant mice still show a protective effect of female gender, indicating that the mechanism of this protection cannot be limited to upregulation of eNOS expression. The eNOS mutant mice also prove that eNOS modulates the cardiac contractile response to ß-adrenergic agonists and baseline diastolic relaxation. Atrial natriuretic peptide, upregulated in the hearts of eNOS mutant mice, normalizes cGMP levels and restores normal diastolic relaxation.
Resumo:
Nitric oxide (NO) plays a crucial role in reproduction at every level in the organism. In the brain, it activates the release of luteinizing hormone-releasing hormone (LHRH). The axons of the LHRH neurons project to the mating centers in the brain stem and by afferent pathways evoke the lordosis reflex in female rats. In males, there is activation of NOergic terminals that release NO in the corpora cavernosa penis to induce erection by generation of cyclic guanosine monophosphate (cGMP). NO also activates the release of LHRH which reaches the pituitary and activates the release of gonadotropins by activating neural NO synthase (nNOS) in the pituitary gland. In the gonad, NO plays an important role in inducing ovulation and in causing luteolysis, whereas in the reproductive tract, it relaxes uterine muscle via cGMP and constricts it via prostaglandins (PG).
Resumo:
The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO) levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1) synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits) containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.
Resumo:
The dorsal periaqueductal gray (DPAG) has been implicated in the behavioral and autonomic expression of defensive reactions. Several results suggest that, along with GABA, glutamate and serotonin, nitric oxide (NO) may play a role in defense reactions mediated by this region. To further investigate this possibility we microinjected methylene blue (MB; 10, 30 or 100 nmol/0.5 µl) into the DPAG of rats submitted to the elevated plus-maze test, an animal model of anxiety. MB has been used as an inhibitor of soluble guanylate cyclase (sGC) to demonstrate cGMP-mediated processes, and there is evidence that NO may exert its biological effects by binding to the heme part of guanylate cyclase, causing an increase in cGMP levels. The results showed that MB (30 nmol) significantly increased the percent of time spent in the open arms (saline = 11.57 ± 1.54, MB = 18.5 ± 2.45, P<0.05) and tended to do the same with the percentage of open arm entries (saline = 25.8 ± 1.97, MB = 33.77 ± 3.07, P<0.10), but did not change the number of enclosed arm entries. The dose-response curve, however, had an inverted U shape. These results indicate that MB, within a limited dose range, has anxiolytic properties when microinjected into the DPAG.