55 resultados para CA2 HOMEOSTASIS
em Scielo Saúde Pública - SP
Resumo:
Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.
Resumo:
Store-operated Ca2+ entry plays an important role in Ca2+ homeostasis in cells but the mechanisms of control of these channels are not completely understood. We describe an investigation of the role of the CD38-cyclic-ADP-ribose (cADPR)-ryanodine-channel (RyR) signaling pathway in store-operated Ca2+ entry in human smooth muscle. We observed that human myometrial cells have a functional store-operated Ca2+ entry mechanism. Furthermore, we observed the presence of transient receptor potential 1, 3, 4, 5, and 6 ion channels in human myometrial cells. Store-operated Ca2+ transient was inhibited by at least 50-70% by several inhibitors of the RyR, including ryanodine (10 µM), dantrolene (10 µM), and ruthenium red (10 µM). Furthermore, the cell permeable inhibitor of the cADPR-system, 8-Br-cADPR (100 µM), is a potent inhibitor of the store-operated entry, decreasing the store operated entry by 80%. Pre-incubation of cells with 100 µM cADPR and the hydrolysis-resistant cADPR analog 3-deaza-cADPR (50 µM), but not with ADP-ribose (ADPR) leads to a 1.6-fold increase in the store-operated Ca2+ transient. In addition, we observed that nicotinamide (1-10 mM), an inhibitor of cADPR synthesis, also leads to inhibition of the store-operated Ca2+ transient by 50-80%. Finally, we observed that the transient receptor potential channels, RyR, and CD38 can be co-immunoprecipitated, indicating that they interact in vivo. Our observations clearly implicate the CD38-cADPR-ryanodine signaling pathway in the regulation of store-operated Ca2+ entry in human smooth muscle cells.
Resumo:
Highly efficient mechanisms regulate intracellular calcium (Ca2+) levels. The recent discovery of new components linking intracellular Ca2+ stores to plasma membrane Ca2+ entry channels has brought new insight into the understanding of Ca2+ homeostasis. Stromal interaction molecule 1 (STIM1) was identified as a Ca2+ sensor essential for Ca2+ store depletion-triggered Ca2+ influx. Orai1 was recognized as being an essential component for the Ca2+ release-activated Ca2+ (CRAC) channel. Together, these proteins participate in store-operated Ca2+ channel function. Defective regulation of intracellular Ca2+ is a hallmark of several diseases. In this review, we focus on Ca2+ regulation by the STIM1/Orai1 pathway and review evidence that implicates STIM1/Orai1 in several pathological conditions including cardiovascular and pulmonary diseases, among others.
Resumo:
Evidence has indicated that the sarcoplasmic reticulum (SR) might be involved in the generation of spontaneous electrical activity in atrial pacemaker cells. We report the effect of disabling the SR with ryanodine (0.1 µM) on the sinus node recovery time (SNRT) measured in isolated right atria from 4-6-month-old male Wistar rats. Electrogram and isometric force were recorded at 36.5oC. Two methods for sinus node resetting were used: a) pulse: a single stimulus pulse interpolated at coupling intervals of 50, 65 or 80% of the regular spontaneous cycle length (RCL), and b) train: a 2-min train of pulses at intervals of 50, 65 or 80% of RCL. Corrected SNRT (cSNRT) was calculated as the difference between SNRT (first spontaneous cycle length after stimulation interruption) and RCL. Ryanodine only slightly increased RCL (<10%), but decreased developed force by 90%. When the pulse method was used, cSNRT (~40 ms), which represents intranodal/atrial conduction time, was independent of the coupling interval and unaffected by ryanodine. However, cSNRT obtained by the train method was significantly higher for shorter intervals between pulses, indicating the occurrence of overdrive suppression. In this case, ryanodine prolonged cSNRT in a rate-dependent fashion, with a greater effect at shorter intervals. These results indicate that: a) a functional SR, albeit important for force development, does not seem to play a major role in atrial automaticity in the rat; b) disruption of cell Ca2+ homeostasis by inhibition of SR function does not appear to affect conduction; however, it enhances overdrive-induced depression of sinusal automaticity.
Resumo:
Autosomal dominant polycystic kidney disease (ADPKD) is one of the most common human life-threatening monogenic disorders. The disease is characterized by bilateral, progressive renal cystogenesis and cyst and kidney enlargement, often leading to end-stage renal disease, and may include extrarenal manifestations. ADPKD is caused by mutation in one of two genes, PKD1 and PKD2, which encode polycystin-1 (PC1) and polycystin-2 (PC2), respectively. PC2 is a non-selective cation channel permeable to Ca2+, while PC1 is thought to function as a membrane receptor. The cyst cell phenotype includes increased proliferation and apoptosis, dedifferentiation, defective planar polarity, and a secretory pattern associated with extracellular matrix remodeling. The two-hit model for cyst formation has been recently extended by the demonstration that early gene inactivation leads to rapid and diffuse development of renal cysts, while inactivation in adult life is followed by focal and late cyst formation. Renal ischemia/reperfusion, however, can function as a third hit, triggering rapid cyst development in kidneys with Pkd1 inactivation induced in adult life. The PC1-PC2 complex behaves as a sensor in the primary cilium, mediating signal transduction via Ca2+ signaling. The intracellular Ca2+ homeostasis is impaired in ADPKD, being apparently responsible for the cAMP accumulation and abnormal cell proliferative response to cAMP. Activated mammalian target for rapamycin (mTOR) and cell cycle dysregulation are also significant features of PKD. Based on the identification of pathways altered in PKD, a large number of preclinical studies have been performed and are underway, providing a basis for clinical trials in ADPKD and helping the design of future trials.
Resumo:
Introduction: Familial Hypomagnesaemia with hypercalciuria and nephrocalcinosis, with severe ocular impairment secondary to claudin-19 mutation, is a rare recessive autossomic disorder. Its spectrum includes renal Mg2+ wasting, medullary nephrocalcinosis and progressive chronic renal failure in young people. Objective: To report a case of kidney transplantation father to daughter in a familial occurrence of severe bilateral nephrocalcinosis associated with ocular impairment in a non-consanguineous Brazilian family, in which two daughters had nephrocalcinosis and severe retinopathy. Methods: The index case, a 19 years-old female, had long-lasting past medical history of recurrent urinary tract infections, and the abdominal X-ray revealed bilateral multiple renal calcifications as well as ureteral lithiasis, and she was under haemodialysis. She had the diagnosis of retinitis pigmentosa in the early neonatal period. The other daughter (13 years-old) had also nephrocalcinosis with preserved kidney function, retinopathy with severe visual impairment, and in addition, she exhibited hypomagnesaemia = 0.5 mg/dL and hypercalciuria. The other family members (mother, father and son) had no clinical disease manifestation. Mutation analysis at claudin-19 revealed two heterozygous missense mutations (P28L and G20D) in both affected daughters. The other family members exhibited mutant monoallelic status. In despite of that, the index case underwent intrafamilial living donor kidney transplantation (father). Conclusion: In conclusion, the disease was characterized by an autosomal recessive compound heterozygous status and, after five years of donation the renal graft function remained stable without recurrence of metabolic disturbances or nephrocalcinosis. Besides, donor single kidney Mg2+ and Ca2+ homeostasis associated to monoallelic status did not affect the safety and the usual living donor post-transplant clinical course.
Resumo:
Calcium signalling is fundamental for muscular contractility of Schistosoma mansoni. We have previously described the presence of transport ATPases (Na+,K+-ATPase and (Ca2+-Mg2+)-ATPase) and calcium channels (ryanodine receptors - RyR) involved in control of calcium homeostasis in this worm. Here we briefly review the main technics (ATPase activity, binding with specific radioligands, fluxes of 45Ca2+ and whole worm contractions) and results obtained in order to compare the distribution patterns of these proteins: thapsigargin-sensitive (Ca2+-Mg2+)-ATPase activity and RyR co-purified in P1 and P4 fractions mainly, which is compatible with a sarcoplasmic reticulum localization, while basal ATPase (along with Na+,K+-ATPase) and thapsigargin-resistant (Ca2+-Mg2+)-ATPase have a distinct distribution, indicative of their plasma membrane localization. Finally we attempt to integrate these contributions with data from other groups in order to propose the first synoptic model for control of calcium homeostasis in S. mansoni.
Resumo:
Malaria is responsible for more deaths around the world than any other parasitic disease. Due to the emergence of strains that are resistant to the current chemotherapeutic antimalarial arsenal, the search for new antimalarial drugs remains urgent though hampered by a lack of knowledge regarding the molecular mechanisms of artemisinin resistance. Semisynthetic compounds derived from diterpenes from the medicinal plant Wedelia paludosawere tested in silico against the Plasmodium falciparumCa2+-ATPase, PfATP6. This protein was constructed by comparative modelling using the three-dimensional structure of a homologous protein, 1IWO, as a scaffold. Compound 21 showed the best docking scores, indicating a better interaction with PfATP6 than that of thapsigargin, the natural inhibitor. Inhibition of PfATP6 by diterpene compounds could promote a change in calcium homeostasis, leading to parasite death. These data suggest PfATP6 as a potential target for the antimalarial ent-kaurane diterpenes.
Resumo:
Ca2+ pumps are important players in smooth muscle contraction. Nevertheless, little information is available about these pumps in the vas deferens. We have determined which subtype of sarco(endo)plasmic reticulum Ca2+-ATPase isoform (SERCA) is expressed in rat vas deferens (RVD) and its modulation by calmodulin (CaM)-dependent mechanisms. The thapsigargin-sensitive Ca2+-ATPase from a membrane fraction containing the highest SERCA levels in the RVD homogenate has the same molecular mass (∼115 kDa) as that of SERCA2 from the rat cerebellum. It has a very high affinity for Ca2+ (Ca0.5 = 780 nM) and a low sensitivity to vanadate (IC50 = 41 µM). These facts indicate that SERCA2 is present in the RVD. Immunoblotting for CaM and Ca2+/calmodulin-dependent protein kinase II (CaMKII) showed the expression of these two regulatory proteins. Ca2+ and CaM increased serine-phosphorylated residues of the 115-kDa protein, indicating the involvement of CaMKII in the regulatory phosphorylation of SERCA2. Phosphorylation is accompanied by an 8-fold increase of thapsigargin-sensitive Ca2+ accumulation in the lumen of vesicles derived from these membranes. These data establish that SERCA2 in the RVD is modulated by Ca2+ and CaM, possibly via CaMKII, in a process that results in stimulation of Ca2+ pumping activity.
Resumo:
The parasympathetic nervous system is important for β-cell secretion and mass regulation. Here, we characterized involvement of the vagus nerve in pancreatic β-cell morphofunctional regulation and body nutrient homeostasis in 90-day-old monosodium glutamate (MSG)-obese rats. Male newborn Wistar rats received MSG (4 g/kg body weight) or saline [control (CTL) group] during the first 5 days of life. At 30 days of age, both groups of rats were submitted to sham-surgery (CTL and MSG groups) or subdiaphragmatic vagotomy (Cvag and Mvag groups). The 90-day-old MSG rats presented obesity, hyperinsulinemia, insulin resistance, and hypertriglyceridemia. Their pancreatic islets hypersecreted insulin in response to glucose but did not increase insulin release upon carbachol (Cch) stimulus, despite a higher intracellular Ca2+ mobilization. Furthermore, while the pancreas weight was 34% lower in MSG rats, no alteration in islet and β-cell mass was observed. However, in the MSG pancreas, increases of 51% and 55% were observed in the total islet and β-cell area/pancreas section, respectively. Also, the β-cell number per β-cell area was 19% higher in MSG rat pancreas than in CTL pancreas. Vagotomy prevented obesity, reducing 25% of body fat stores and ameliorated glucose homeostasis in Mvag rats. Mvag islets demonstrated partially reduced insulin secretion in response to 11.1 mM glucose and presented normalization of Cch-induced Ca2+ mobilization and insulin release. All morphometric parameters were similar among Mvag and CTL rat pancreases. Therefore, the higher insulin release in MSG rats was associated with greater β-cell/islet numbers and not due to hypertrophy. Vagotomy improved whole body nutrient homeostasis and endocrine pancreatic morphofunction in Mvag rats.
Resumo:
FUNDAMENTO: Treinamento fÃsico (TF) aumenta a sensibilidade dos hormônios tireoidianos (HT) e a expressão gênica de estruturas moleculares envolvidas no movimento intracelular de cálcio do miocárdio, enquanto a restrição alimentar (RIA) promove efeitos contrários ao TF. OBJETIVO: Avaliar os efeitos da associação TF e RIA sobre os nÃveis plasmáticos dos HT e a produção de mRNA dos receptores HT e estruturas moleculares do movimento de cálcio do miocárdio de ratos. MÉTODOS: Utilizaram-se ratos Wistar Kyoto divididos em: controle (C, n = 7), RIA (R50, n = 7), exercÃcio fÃsico (EX, n = 7) e exercÃcio fÃsico + RIA (EX50, n = 7). A RIA foi de 50% e o TF foi natação (1 hora/dia, cinco sessões/semana, 12 semanas consecutivas). Avaliaram-se as concentrações séricas de triiodotironina (T3), tiroxina (T4) e hormônio tireotrófico (TSH). O mRNA da bomba de cálcio do retÃculo sarcoplasmático (SERCA2a), fosfolamban (PLB), trocador Na+/Ca+2 (NCX), canal lento de cálcio (canal-L), rianodina (RYR), calsequestrina (CQS) e receptor de HT (TRα1 e TRβ1) do miocárdio foram avaliados por reação em cadeia da polimerase (PCR) em tempo real. RESULTADOS: RIA reduziu o T4, TSH e mRNA do TRα1 e aumentou a expressão da PLB, NCX e canal-L. TF aumentou a expressão do TRβ1, canal-L e NCX. A associação TF e RIA reduziu T4 e TSH e aumentou o mRNA do TRβ1, SERCA2a, NCX, PLB e correlação do TRβ1 com a CQS e NCX. CONCLUSÃO: Associação TF e RIA aumentou o mRNA das estruturas moleculares cálcio transiente, porém o eixo HT-receptor não parece participar da transcrição gênica dessas estruturas.
Resumo:
Background: Stress is associated with cardiovascular diseases. Objective: This study aimed at assessing whether chronic stress induces vascular alterations, and whether these modulations are nitric oxide (NO) and Ca2+ dependent. Methods: Wistar rats, 30 days of age, were separated into 2 groups: control (C) and Stress (St). Chronic stress consisted of immobilization for 1 hour/day, 5 days/week, 15 weeks. Systolic blood pressure was assessed. Vascular studies on aortic rings were performed. Concentration-effect curves were built for noradrenaline, in the presence of L-NAME or prazosin, acetylcholine, sodium nitroprusside and KCl. In addition, Ca2+ flux was also evaluated. Results: Chronic stress induced hypertension, decreased the vascular response to KCl and to noradrenaline, and increased the vascular response to acetylcholine. L-NAME blunted the difference observed in noradrenaline curves. Furthermore, contractile response to Ca2+ was decreased in the aorta of stressed rats. Conclusion: Our data suggest that the vascular response to chronic stress is an adaptation to its deleterious effects, such as hypertension. In addition, this adaptation is NO- and Ca2+-dependent. These data help to clarify the contribution of stress to cardiovascular abnormalities. However, further studies are necessary to better elucidate the mechanisms involved in the cardiovascular dysfunction associated with stressors. (Arq Bras Cardiol. 2014; [online].ahead print, PP.0-0)
Obesity Resistance Promotes Mild Contractile Dysfunction Associated with Intracellular Ca2+ Handling
Resumo:
Abstract Background: Diet-induced obesity is frequently used to demonstrate cardiac dysfunction. However, some rats, like humans, are susceptible to developing an obesity phenotype, whereas others are resistant to that. Objective: To evaluate the association between obesity resistance and cardiac function, and the impact of obesity resistance on calcium handling. Methods: Thirty-day-old male Wistar rats were distributed into two groups, each with 54 animals: control (C; standard diet) and obese (four palatable high-fat diets) for 15 weeks. After the experimental protocol, rats consuming the high-fat diets were classified according to the adiposity index and subdivided into obesity-prone (OP) and obesity-resistant (OR). Nutritional profile, comorbidities, and cardiac remodeling were evaluated. Cardiac function was assessed by papillary muscle evaluation at baseline and after inotropic maneuvers. Results: The high-fat diets promoted increase in body fat and adiposity index in OP rats compared with C and OR rats. Glucose, lipid, and blood pressure profiles remained unchanged in OR rats. In addition, the total heart weight and the weight of the left and right ventricles in OR rats were lower than those in OP rats, but similar to those in C rats. Baseline cardiac muscle data were similar in all rats, but myocardial responsiveness to a post-rest contraction stimulus was compromised in OP and OR rats compared with C rats. Conclusion: Obesity resistance promoted specific changes in the contraction phase without changes in the relaxation phase. This mild abnormality may be related to intracellular Ca2+ handling.