17 resultados para Brain image classification
em Scielo Saúde Pública - SP
Resumo:
This study compares the precision of three image classification methods, two of remote sensing and one of geostatistics applied to areas cultivated with citrus. The 5,296.52ha area of study is located in the city of Araraquara - central region of the state of São Paulo (SP), Brazil. The multispectral image from the CCD/CBERS-2B satellite was acquired in 2009 and processed through the Geographic Information System (GIS) SPRING. Three classification methods were used, one unsupervised (Cluster), and two supervised (Indicator Kriging/IK and Maximum Likelihood/Maxver), in addition to the screen classification taken as field checking.. Reliability of classifications was evaluated by Kappa index. In accordance with the Kappa index, the Indicator kriging method obtained the highest degree of reliability for bands 2 and 4. Moreover the Cluster method applied to band 2 (green) was the best quality classification between all the methods. Indicator Kriging was the classifier that presented the citrus total area closest to the field check estimated by -3.01%, whereas Maxver overestimated the total citrus area by 42.94%.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.
Resumo:
In vivo proton magnetic resonance spectroscopy (¹H-MRS) is a technique capable of assessing biochemical content and pathways in normal and pathological tissue. In the brain, ¹H-MRS complements the information given by magnetic resonance images. The main goal of the present study was to assess the accuracy of ¹H-MRS for the classification of brain tumors in a pilot study comparing results obtained by manual and semi-automatic quantification of metabolites. In vivo single-voxel ¹H-MRS was performed in 24 control subjects and 26 patients with brain neoplasms that included meningiomas, high-grade neuroglial tumors and pilocytic astrocytomas. Seven metabolite groups (lactate, lipids, N-acetyl-aspartate, glutamate and glutamine group, total creatine, total choline, myo-inositol) were evaluated in all spectra by two methods: a manual one consisting of integration of manually defined peak areas, and the advanced method for accurate, robust and efficient spectral fitting (AMARES), a semi-automatic quantification method implemented in the jMRUI software. Statistical methods included discriminant analysis and the leave-one-out cross-validation method. Both manual and semi-automatic analyses detected differences in metabolite content between tumor groups and controls (P < 0.005). The classification accuracy obtained with the manual method was 75% for high-grade neuroglial tumors, 55% for meningiomas and 56% for pilocytic astrocytomas, while for the semi-automatic method it was 78, 70, and 98%, respectively. Both methods classified all control subjects correctly. The study demonstrated that ¹H-MRS accurately differentiated normal from tumoral brain tissue and confirmed the superiority of the semi-automatic quantification method.
Resumo:
Many texture measures have been developed and used for improving land-cover classification accuracy, but rarely has research examined the role of textures in improving the performance of aboveground biomass estimations. The relationship between texture and biomass is poorly understood. This paper used Landsat Thematic Mapper (TM) data to explore relationships between TM image textures and aboveground biomass in Rondônia, Brazilian Amazon. Eight grey level co-occurrence matrix (GLCM) based texture measures (i.e., mean, variance, homogeneity, contrast, dissimilarity, entropy, second moment, and correlation), associated with seven different window sizes (5x5, 7x7, 9x9, 11x11, 15x15, 19x19, and 25x25), and five TM bands (TM 2, 3, 4, 5, and 7) were analyzed. Pearson's correlation coefficient was used to analyze texture and biomass relationships. This research indicates that most textures are weakly correlated with successional vegetation biomass, but some textures are significantly correlated with mature forest biomass. In contrast, TM spectral signatures are significantly correlated with successional vegetation biomass, but weakly correlated with mature forest biomass. Our findings imply that textures may be critical in improving mature forest biomass estimation, but relatively less important for successional vegetation biomass estimation.
Resumo:
This study aimed to propose methods to identify croplands cultivated with winter cereals in the northern region of Rio Grande do Sul State, Brazil. Thus, temporal profiles of Normalized Difference Vegetation Index (NDVI) from MODIS sensor, from April to December of the 2000 to 2008, were analyzed. Firstly, crop masks were elaborated by subtracting the minimum NDVI image (April to May) from the maximum NDVI image (June to October). Then, an unsupervised classification of NDVI images was carried out (Isodata), considering the crop mask areas. According to the results, crop masks allowed the identification of pixels with greatest green biomass variation. This variation might be associated or not with winter cereals areas established to grain production. The unsupervised classification generated classes in which NDVI temporal profiles were associated with water bodies, pastures, winter cereals for grain production and for soil cover. Temporal NDVI profiles of the class winter cereals for grain production were in agree with crop patterns in the region (developmental stage, management standard and sowing dates). Therefore, unsupervised classification based on crop masks allows distinguishing and monitoring winter cereal crops, which were similar in terms of morphology and phenology.
Resumo:
OBJECTIVE: to determine predictive factors for prognosis of decompressive craniectomy in patients with severe traumatic brain injury (TBI), describing epidemiological findings and the major complications of this procedure.METHODS: we conducted a retrospective study based on analysis of clinical and neurological outcome, using the extended Glasgow outcome in 56 consecutive patients diagnosed with severe TBI scale treated in the emergency department from February 2004 to July 2012. The variables assessed were age, mechanism of injury, presence of pupillary changes, Glasgow coma scale (GCS) score on admission, CT scan findings (volume, type and association of intracranial lesions, deviation from the midline structures and classification in the scale of Marshall and Rotterdam).RESULTS: we observed that 96.4% of patients underwent unilateral decompressive craniectomy (DC) with expansion duraplasty, and the remainder to bilateral DC, 53.6% of cases being on the right 42.9% on the left, and 3.6% bilaterally, with predominance of the fourth decade of life and males (83.9%). Complications were described as transcalvarial herniation (17.9%), increased volume of brain contusions (16.1%) higroma (16.1%), hydrocephalus (10.7%), swelling of the contralateral lesions (5.3%) and CSF leak (3.6%).CONCLUSION: among the factors studied, only the presence of mydriasis with absence of pupillary reflex, scoring 4 and 5 in the Glasgow Coma Scale, association of intracranial lesions and diversion of midline structures (DML) exceeding 15mm correlated statistically as predictors of poor prognosis.
Resumo:
Fifty Bursa of Fabricius (BF) were examined by conventional optical microscopy and digital images were acquired and processed using Matlab® 6.5 software. The Artificial Neuronal Network (ANN) was generated using Neuroshell® Classifier software and the optical and digital data were compared. The ANN was able to make a comparable classification of digital and optical scores. The use of ANN was able to classify correctly the majority of the follicles, reaching sensibility and specificity of 89% and 96%, respectively. When the follicles were scored and grouped in a binary fashion the sensibility increased to 90% and obtained the maximum value for the specificity of 92%. These results demonstrate that the use of digital image analysis and ANN is a useful tool for the pathological classification of the BF lymphoid depletion. In addition it provides objective results that allow measuring the dimension of the error in the diagnosis and classification therefore making comparison between databases feasible.
Resumo:
Some basic topics concerned with the extraction of textural and geometric information from cell nucleus images as well as description and characterization of chromatin supraorganization and consequent classification of nuclear phenotypes are presented.
Resumo:
The actions of fibroblast growth factors (FGFs), particularly the basic form (bFGF), have been described in a large number of cells and include mitogenicity, angiogenicity and wound repair. The present review discusses the presence of the bFGF protein and messenger RNA as well as the presence of the FGF receptor messenger RNA in the rodent brain by means of semiquantitative radioactive in situ hybridization in combination with immunohistochemistry. Chemical and mechanical injuries to the brain trigger a reduction in neurotransmitter synthesis and neuronal death which are accompanied by astroglial reaction. The altered synthesis of bFGF following brain lesions or stimulation was analyzed. Lesions of the central nervous system trigger bFGF gene expression by neurons and/or activated astrocytes, depending on the type of lesion and time post-manipulation. The changes in bFGF messenger RNA are frequently accompanied by a subsequent increase of bFGF immunoreactivity in astrocytes in the lesioned pathway. The reactive astrocytes and injured neurons synthesize increased amount of bFGF, which may act as a paracrine/autocrine factor, protecting neurons from death and also stimulating neuronal plasticity and tissue repair
Resumo:
This article is a transcription of an electronic symposium sponsored by the Brazilian Society of Neuroscience and Behavior (SBNeC). Invited researchers from the European Union, North America and Brazil discussed two issues on anxiety, namely whether panic is a very intense anxiety or something else, and what aspects of clinical anxiety are reproduced by animal models. Concerning the first issue, most participants agreed that generalized anxiety and panic disorder are different on the basis of clinical manifestations, drug response and animal models. Also, underlying brain structures, neurotransmitter modulation and hormonal changes seem to involve important differences. It is also common knowledge that existing animal models generate different types of fear/anxiety. A challenge for future research is to establish a good correlation between animal models and nosological classification.
Resumo:
A gravimetric method was evaluated as a simple, sensitive, reproducible, low-cost alternative to quantify the extent of brain infarct after occlusion of the medial cerebral artery in rats. In ether-anesthetized rats, the left medial cerebral artery was occluded for 1, 1.5 or 2 h by inserting a 4-0 nylon monofilament suture into the internal carotid artery. Twenty-four hours later, the brains were processed for histochemical triphenyltetrazolium chloride (TTC) staining and quantitation of the schemic infarct. In each TTC-stained brain section, the ischemic tissue was dissected with a scalpel and fixed in 10% formalin at 0ºC until its total mass could be estimated. The mass (mg) of the ischemic tissue was weighed on an analytical balance and compared to its volume (mm³), estimated either by plethysmometry using platinum electrodes or by computer-assisted image analysis. Infarct size as measured by the weighing method (mg), and reported as a percent (%) of the affected (left) hemisphere, correlated closely with volume (mm³, also reported as %) estimated by computerized image analysis (r = 0.88; P < 0.001; N = 10) or by plethysmography (r = 0.97-0.98; P < 0.0001; N = 41). This degree of correlation was maintained between different experimenters. The method was also sensitive for detecting the effect of different ischemia durations on infarct size (P < 0.005; N = 23), and the effect of drug treatments in reducing the extent of brain damage (P < 0.005; N = 24). The data suggest that, in addition to being simple and low cost, the weighing method is a reliable alternative for quantifying brain infarct in animal models of stroke.
Resumo:
The loss of brain volume has been used as a marker of tissue destruction and can be used as an index of the progression of neurodegenerative diseases, such as multiple sclerosis. In the present study, we tested a new method for tissue segmentation based on pixel intensity threshold using generalized Tsallis entropy to determine a statistical segmentation parameter for each single class of brain tissue. We compared the performance of this method using a range of different q parameters and found a different optimal q parameter for white matter, gray matter, and cerebrospinal fluid. Our results support the conclusion that the differences in structural correlations and scale invariant similarities present in each tissue class can be accessed by generalized Tsallis entropy, obtaining the intensity limits for these tissue class separations. In order to test this method, we used it for analysis of brain magnetic resonance images of 43 patients and 10 healthy controls matched for gender and age. The values found for the entropic q index were 0.2 for cerebrospinal fluid, 0.1 for white matter and 1.5 for gray matter. With this algorithm, we could detect an annual loss of 0.98% for the patients, in agreement with literature data. Thus, we can conclude that the entropy of Tsallis adds advantages to the process of automatic target segmentation of tissue classes, which had not been demonstrated previously.
Resumo:
Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.
Resumo:
ABSTRACT The objective of this work was to study the distribution of values of the coefficient of variation (CV) in the experiments of papaya crop (Carica papaya L.) by proposing ranges to guide researchers in their evaluation for different characters in the field. The data used in this study were obtained by bibliographical review in Brazilian journals, dissertations and thesis. This study considered the following characters: diameter of the stalk, insertion height of the first fruit, plant height, number of fruits per plant, fruit biomass, fruit length, equatorial diameter of the fruit, pulp thickness, fruit firmness, soluble solids and internal cavity diameter, from which, value ranges were obtained for the CV values for each character, based on the methodology proposed by Garcia, Costa and by the standard classification of Pimentel-Gomes. The results obtained in this study indicated that ranges of CV values were different among various characters, presenting a large variation, which justifies the necessity of using specific evaluation range for each character. In addition, the use of classification ranges obtained from methodology of Costa is recommended.