14 resultados para Brain Activation Pattern
em Scielo Saúde Pública - SP
Resumo:
The case of a 16-year-old patient with atrioventricular tachycardia caused by a single left anterolateral accessory pathway is reported. When the patient underwent radiofrequency ablation, a lesion on the mitral annulus lateral wall produced changes in the retrograde atrial activation pattern determined by that pathway; changes ranged from a delay in depolarization of the annulus posterior portions to full left atrium counterclockwise activation. Such phenomena were probably caused by a block in the isthmus between the annulus and the lower left pulmonary vein ostium. This case illustrates the importance of the mitral-pulmonary isthmus in the process of left atrium activation, an alert to changes induced by its unintentional block during accessory pathway ablation.
Resumo:
N-acetyl-aspartyl-glutamate (NAAG) and its hydrolysis product N-acetyl-L-aspartate (NAA) are among the most important brain metabolites. NAA is a marker of neuron integrity and viability, while NAAG modulates glutamate release and may have a role in neuroprotection and synaptic plasticity. Investigating on a quantitative basis the role of these metabolites in brain metabolism in vivo by magnetic resonance spectroscopy (MRS) is a major challenge since the main signals of NAA and NAAG largely overlap. This is a preliminary study in which we evaluated NAA and NAAG changes during a visual stimulation experiment using functional MRS. The paradigm used consisted of a rest period (5 min and 20 s), followed by a stimulation period (10 min and 40 s) and another rest period (10 min and 40 s). MRS from 17 healthy subjects were acquired at 3T with TR/TE = 2000/288 ms. Spectra were averaged over subjects and quantified with LCModel. The main outcomes were that NAA concentration decreased by about 20% with the stimulus, while the concentration of NAAG concomitantly increased by about 200%. Such variations fall into models for the energy metabolism underlying neuronal activation that point to NAAG as being responsible for the hyperemic vascular response that causes the BOLD signal. They also agree with the fact that NAAG and NAA are present in the brain at a ratio of about 1:10, and with the fact that the only known metabolic pathway for NAAG synthesis is from NAA and glutamate.
Resumo:
The relevance of the relationship between cardiac disease and depressive symptoms is well established. White matter hyperintensity, a bright signal area in the brain on T2-weighted magnetic resonance imaging scans, has been separately associated with cardiovascular risk factors, cardiac disease and late-life depression. However, no study has directly investigated the association between heart failure, major depressive symptoms and the presence of hyperintensities. Using a visual assessment scale, we have investigated the frequency and severity of white matter hyperintensities identified by magnetic resonance imaging in eight patients with late-life depression and heart failure, ten patients with heart failure without depression, and fourteen healthy elderly volunteers. Since the frontal lobe has been the proposed site for the preferential location of white matter hyperintensities in patients with late-life depression, we focused our investigation specifically on this brain region. Although there were no significant group differences in white matter hyperintensities in the frontal region, a significant direct correlation emerged between the severity of frontal periventricular white matter hyperintensity and scores on the Hamilton scale for depression in the group with heart failure and depression (P = 0.016, controlled for the confounding influence of age). There were no significant findings in any other areas of the brain. This pattern of results adds support to a relationship between cardiovascular risk factors and depressive symptoms, and provides preliminary evidence that the presence of white matter hyperintensities specifically in frontal regions may contribute to the severity of depressive symptoms in cardiac disease.
Resumo:
Immune responses to malaria infections are characterized by strong T and B cell activation, which, in addition of potentially causing immunopathology, are of poor efficacy against the infection. It is possible that the thymus is involved in the origin of immunopathological reactions and a target during malaria infections. This work was developed in an attempt to further clarify these points. We studied the sequential changes in the thymus of CBA mice infected with Plasmodium berghei ANKA, a model in which 60-90% of the infected animals develop cerebral malaria. During the acute phase of infection, different degrees of thymocyte apoptosis were recorded: (1) starry-sky pattern of diffuse apoptosis with maintenance of cortical-medullary structure; (2) intense apoptosis with cortical atrophy, with absence of large cells; (3) severe cortical thymocyte depletion, resulting in cortical-medullary inversion. In the latter, only residual clusters of small thymocytes were observed within the framework of epithelial cells. The intensity of thymus alterations could not be associated with the degree of parasitemia, the expression of clinical signs of cerebral malaria or intensity of brain lesions. The implications of these events for malaria immunity and pathology are discussed.
Resumo:
Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection.
Resumo:
This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.
Resumo:
The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation.
Resumo:
The sensitivity of copper,zinc (CuZn)- and manganese (Mn)-superoxide dismutase (SOD) to exogenous estradiol benzoate (EB) was investigated in Wistar rats during postnatal brain development. Enzyme activities were measured in samples prepared from brains of rats of both sexes and various ages between 0 and 75 days, treated sc with 0.5 µg EB/100 g body weight in 0.1 ml olive oil/100 g body weight, 48 and 24 h before sacrifice. In females, EB treatment stimulated MnSOD activity on days 0 (66.1%), 8 (72.7%) and 15 (81.7%). In males, the stimulatory effect of EB on MnSOD activity on day 0 (113.6%) disappeared on day 8 and on days 15 and 45 it became inhibitory (40.3 and 30.5%, respectively). EB had no effect on the other age groups. The stimulatory effect of EB on CuZnSOD activity in newborn females (51.8%) changed to an inhibitory effect on day 8 (38.4%) and disappeared by day 45 when inhibition was detected again (48.7%). In males, the inhibitory effect on this enzyme was observed on days 0 (45.0%) and 15 (28.9%), and then disappeared until day 60 when a stimulatory effect was observed (38.4%). EB treatment had no effect on the other age groups. The sensitivity of MnSOD to estradiol differed significantly between sexes during the neonatal and prepubertal period, whereas it followed a similar pattern thereafter. The sensitivity of CuZnSOD to estradiol differed significantly between sexes during most of the study period. Regression analysis showed that the sensitivity of MnSOD to this estrogen tended to decrease similarly in both sexes, whereas the sensitivity of CuZnSOD showed a significantly different opposite tendency in female and male rats. These are the first reports indicating hormonal modulation of antioxidant enzyme activities related to the developmental process.
Resumo:
We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.
Resumo:
We evaluated the hemodynamic pattern and the contribution of the sympathetic nervous system in conscious and anesthetized (1.4 g/kg urethane, iv) Wistar rats with L-NAME-induced hypertension (20 mg/kg daily). The basal hemodynamic profile was similar for hypertensive animals, conscious (N = 12) or anesthetized (N = 12) treated with L-NAME for 2 or 7 days: increase of total peripheral resistance associated with a decrease of cardiac output (CO) compared to normotensive animals, conscious (N = 14) or anesthetized (N = 14). Sympathetic blockade with hexamethonium essentially caused a decrease in total peripheral resistance in hypertensive animals (conscious, 2 days: from (means ± SEM) 2.47 ± 0.08 to 2.14 ± 0.07; conscious, 7 days: from 2.85 ± 0.13 to 2.07 ± 0.33; anesthetized, 2 days: from 3.00 ± 0.09 to 1.83 ± 0.25 and anesthetized, 7 days: from 3.56 ± 0.11 to 1.53 ± 0.10 mmHg mL-1 min-1) with no change in CO in either group. However, in the normotensive group a fall in CO (conscious: from 125 ± 4.5 to 96 ± 4; anesthetized: from 118 ± 1.5 to 104 ± 5.5 mL/min) was observed. The responses after hexamethonium were more prominent in the hypertensive anesthetized group. However, no difference was observed between conscious and anesthetized normotensive rats in response to sympathetic blockade. The present study shows that the vasoconstriction in response to L-NAME was mediated by the sympathetic drive. The sympathetic tone plays an important role in the initiation and maintenance of hypertension.
Resumo:
High resolution proton nuclear magnetic resonance spectroscopy (¹H MRS) can be used to detect biochemical changes in vitro caused by distinct pathologies. It can reveal distinct metabolic profiles of brain tumors although the accurate analysis and classification of different spectra remains a challenge. In this study, the pattern recognition method partial least squares discriminant analysis (PLS-DA) was used to classify 11.7 T ¹H MRS spectra of brain tissue extracts from patients with brain tumors into four classes (high-grade neuroglial, low-grade neuroglial, non-neuroglial, and metastasis) and a group of control brain tissue. PLS-DA revealed 9 metabolites as the most important in group differentiation: γ-aminobutyric acid, acetoacetate, alanine, creatine, glutamate/glutamine, glycine, myo-inositol, N-acetylaspartate, and choline compounds. Leave-one-out cross-validation showed that PLS-DA was efficient in group characterization. The metabolic patterns detected can be explained on the basis of previous multimodal studies of tumor metabolism and are consistent with neoplastic cell abnormalities possibly related to high turnover, resistance to apoptosis, osmotic stress and tumor tendency to use alternative energetic pathways such as glycolysis and ketogenesis.
Resumo:
Gliomas are the most common and malignant primary brain tumors in humans. Studies have shown that classes of kaurene diterpene have anti-tumor activity related to their ability to induce apoptosis. We investigated the response of the human glioblastoma cell line U87 to treatment with ent-kaur-16-en-19-oic acid (kaurenoic acid, KA). We analyzed cell survival and the induction of apoptosis using flow cytometry and annexin V staining. Additionally, the expression of anti-apoptotic (c-FLIP and miR-21) and apoptotic (Fas, caspase-3 and caspase-8) genes was analyzed by relative quantification (real-time PCR) of mRNA levels in U87 cells that were either untreated or treated with KA (30, 50, or 70 µM) for 24, 48, and 72 h. U87 cells treated with KA demonstrated reduced viability, and an increase in annexin V- and annexin V/PI-positive cells was observed. The percentage of apoptotic cells was 9% for control cells, 26% for cells submitted to 48 h of treatment with 50 µM KA, and 31% for cells submitted to 48 h of treatment with 70 µM KA. Similarly, in U87 cells treated with KA for 48 h, we observed an increase in the expression of apoptotic genes (caspase-8, -3) and a decrease in the expression of anti-apoptotic genes (miR-21 and c-FLIP). KA possesses several interesting properties and induces apoptosis through a unique mechanism. Further experiments will be necessary to determine if KA may be used as a lead compound for the development of new chemotherapeutic drugs for the treatment of primary brain tumors.
Resumo:
Sublethal ischemic preconditioning (IPC) is a powerful inducer of ischemic brain tolerance. However, its underlying mechanisms are still not well understood. In this study, we chose four different IPC paradigms, namely 5 min (5 min duration), 5×5 min (5 min duration, 2 episodes, 15-min interval), 5×5×5 min (5 min duration, 3 episodes, 15-min intervals), and 15 min (15 min duration), and demonstrated that three episodes of 5 min IPC activated autophagy to the greatest extent 24 h after IPC, as evidenced by Beclin expression and LC3-I/II conversion. Autophagic activation was mediated by the tuberous sclerosis type 1 (TSC1)-mTor signal pathway as IPC increased TSC1 but decreased mTor phosphorylation. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and hematoxylin and eosin staining confirmed that IPC protected against cerebral ischemic/reperfusion (I/R) injury. Critically, 3-methyladenine, an inhibitor of autophagy, abolished the neuroprotection of IPC and, by contrast, rapamycin, an autophagy inducer, potentiated it. Cleaved caspase-3 expression, neurological scores, and infarct volume in different groups further confirmed the protection of IPC against I/R injury. Taken together, our data indicate that autophagy activation might underlie the protection of IPC against ischemic injury by inhibiting apoptosis.
Resumo:
Understanding the effects of radiation and its possible influence on the nervous system are of great clinical interest. However, there have been few electrophysiological studies on brain activity after exposure to ionizing radiation (IR). A new methodological approach regarding the assessment of the possible effects of IR on brain activity is the use of linear and nonlinear mathematical methods in the analysis of complex time series, such as brain oscillations measured using the electrocorticogram (ECoG). The objective of this study was to use linear and nonlinear mathematical methods as biomarkers of gamma radiation regarding cortical electrical activity. Adult Wistar rats were divided into 3 groups: 1 control and 2 irradiated groups, evaluated at 24 h (IR24) and 90 days (IR90) after exposure to 18 Gy of gamma radiation from a cobalt-60 radiotherapy source. The ECoG was analyzed using power spectrum methods for the calculation of the power of delta, theta, alpha and beta rhythms and by means of the α-exponent of the detrended fluctuation analysis (DFA). Using both mathematical methods it was possible to identify changes in the ECoG, and to identify significant changes in the pattern of the recording at 24 h after irradiation. Some of these changes were persistent at 90 days after exposure to IR. In particular, the theta wave using the two methods showed higher sensitivity than other waves, suggesting that it is a possible biomarker of exposure to IR.