10 resultados para Biosphere
em Scielo Saúde Pública - SP
Resumo:
Os parâmetros do "Simplified Simple Biosphere Model"-SSiB foram validados e posteriormente calibrados para os sítios de pastagem da Fazenda Nossa Senhora Aparecida (62º22'W; 10º45'S) e de floresta da Reserva Biológica do Jaru (62º22'W; 10º45'S), ambos situados no estado de Rondônia. Foram utilizadas medidas micrometeorológicas e hidrológicas obtidas durante o período seco de 2001, como parte do Experimento de Grande Escala da Biosfera-Atmosfera na Amazônia - LBA. Os resultados indicam que o modelo simulou bem o saldo de radiação, tanto na pastagem quanto na floresta. O fluxo de calor latente foi superestimado nos dois sítios nos períodos de simulação, o que deve estar relacionado aos parâmetros utilizados no cálculo dessa variável. O modelo subestimou o fluxo de calor sensível na pastagem e na floresta, principalmente no período noturno; porém, para a floresta, os valores foram mais próximos daqueles observados. Com os parâmetros ajustados, melhores estimativas dos fluxos de calor latente e de calor sensível foram geradas e, conseqüentemente, representou melhor as partições de energia na floresta e na pastagem.
Resumo:
Soil samples were collected from the top 7.5 cm of soil in a Strict Natural Reserve (SNR), a surrounding buffer zone, a cassava farm and matured plantations of Gmelina, teak, and pine, so as to determine if plantation establishment and intensive cultivation affect the density and diversity of soil mites. Altogether, 41 taxonomic groups of mites were identified. The diversity and densities of mites in within the SNR, the buffer zone and the Gmelina were more than the diversity and densities in the cassava farm, teak and pine plantations. Each plantation had its own unique community structure which was different from the community structure in the SNR plot. The SNR plot and Gmelina were dominated by detritivorous cryptostigmatid mites unlike teak and pine which were dominated by predatory mesostigmatid and prostigmatid mites respectively. Low cryptostigmatid mite densities in the plantations and cassava farm were seen as a consequence of low fertility status of the soil, the evidence of which was revealed by soil pH and organic matter data.
Resumo:
Mecanismos de vento local, tal como as brisas, influenciam o transporte e dispersão dos gases. Medidas da direção do vento e concentração de ozônio (O3) à 10 metros de altura foram realizadas durante a execução do projeto LBA/CLAIRE-2001 (Large Scale Biosphere-Atmosphere Experiment in Amazônia / Cooperative LBA Airbone Regional Experiment - 2001), no período de 02 a 28.07.2001, nas dependências do Laboratório de Limnologia (01º 55' S, 59º28' W, 174 m) pertencente à Usina Hidrelétrica de Balbina, Amazonas. O lago artificial tem uma área de 2.360 km², sendo suficientemente grande para estabelecer um regime de brisas. As brisas de lago e floresta apresentam-se de forma bem definidas, sendo que a brisa de lago fica melhor caracterizada no período mais quente do dia (10 às 14 horas), enquanto a brisa de floresta evidencia-se no período de 16 às 08 horas com o resfriamento radiativo mais intenso da floresta, o que acarreta um forte contraste térmico. Enquanto isso, a concentração média diária (24 h) de O3 foi de 8,7 ppbv com média de 10,6 ppbv no período diurno e 3,5 ppbv no período noturno. Os resultados também indicaram que quando a brisa é de lago, mesmo a noturna, a concentração de O3 é muito maior do que correspondente a concentração referente a brisa de floresta.
Resumo:
Este artigo se propõe a apresentar exemplos de questões científicas que puderam ser respondidas no contexto do Projeto LBA (Large Sale Biosphere-Atmosphere Experiment in Amazonia) graças à contribuição de informações derivadas de sensoriamento remoto. Os métodos de sensoriamento remoto permitem integrar informações sobre os vários processos físicos e biológicos em diferentes escalas de tempo e espaço. Nesse artigo, são enfatizados aqueles avanços de conhecimento que jamais seriam alcançados sem a concorrência da informação derivada de sensoriamento.
Resumo:
A survey of carnivore mammals was accomplished in Aparados da Serra National Park from February 1998 to March 2000. The park has 10,250 ha and is considered a biodiversity core area of the Atlantic Forest Biosphere Reserve in the Rio Grande do Sul State, Brazil. The landscape is characterized by relatively well preserved relicts of Araucaria angustifolia (Bertol.) Kuntze forest, grasslands and Atlantic Forest, which have contributed for the survival of endangered carnivore mammals. The National Park was divided in a grid of 16 km² cells using a 1:50,000 scale map. The animals were recorded using indirect methods, by identifying signs (scats, tracks) and direct observation in 2.5 km long and 5 m wide transects, with 10 replicates in each grid cell. Interviews with local people were also used to confirm the animal presence. A total of 13 species was recorded: Procyon cancrivorus (Cuvier, 1798), Pseudalopex gymnocercus (G. Fischer, 1814), Leopardus pardalis (Linnaeus, 1758) and Cerdocyon thous (Linnaeus, 1766) were the most frequent species registered. Nasua nasua (Linnaeus 1766), Herpailurus yaguarondi (Lacépède, 1809), Chrysocyon brachyurus (Illiger, 1815), Eira barbara (Linnaeus, 1758), Leopardus sp., Puma concolor (Linnaeus, 1771), Galictis cuja (Molina, 1782), Conepatus chinga (Molina, 1892) and Lontra longicaudis (Olfers, 1818) showed lower frequencies. The Park presented areas with significant differences (Mantel Test, P< 0.05) in species richness and composition related to habitat classes. Areas with high habitat richness presented high species richness. The Araucaria forest was the habitat that presented the higher carnivore richness. The border areas of the Park are influenced by several environmental degradation factors that could be affecting the distribution of carnivores.
Resumo:
A description and illustrations of Monohelea maya, new species, based on male and female characteristics are provided. The specimens were collected in the special biosphere Reserves of Ria Lagartos and Ria Celestun, Yucatan State, Mexico.
Resumo:
Two snapshot surveys to establish the diversity and ecological preferences of mosquitoes (Diptera: Culicidae) in the terra firme primary rain forest surrounding the Tiputini Biodiversity Station in the UNESCO Yasuní Biosphere Reserve of eastern Amazonian Ecuador were carried out in November 1998 and May 1999. The mosquito fauna of this region is poorly known; the focus of this study was to obtain high quality link-reared specimens that could be used to unequivocally confirm species level diversity through integrated systematic study of all life stages and DNA sequences. A total of 2,284 specimens were preserved; 1,671 specimens were link-reared with associated immature exuviae, all but 108 of which are slide mounted. This study identified 68 unique taxa belonging to 17 genera and 27 subgenera. Of these, 12 are new to science and 37 comprise new country records. DNA barcodes [658-bp of the mtDNA cytochrome c oxidase ( COI ) I gene] are presented for 58 individuals representing 20 species and nine genera. DNA barcoding proved useful in uncovering and confirming new species and we advocate an integrated systematics approach to biodiversity studies in future. Associated bionomics of all species collected are discussed. An updated systematic checklist of the mosquitoes of Ecuador (n = 179) is presented for the first time in 60 years.
Resumo:
The Cerrado has been the main source of firewood and charcoal in Brazil, but despite being one of the hot spots for conservation of the world's biodiversity, neither plantations of native species nor sustainable management has been adopted in the region. The aim of this work was to investigate the biomass distribution and the potential for energy production of the cerrado species. The study was conducted in a cerrado sensu stricto site at the Água Limpa Farm (15º 56'14'' S and 47º 46'08'' W) in the Cerrado Biosphere Reserve. An area of 63.54ha was divided in 20 x 50m plots and, a random sample consisting of ten of these plots, representing 1.56% of the study-site, was assessed. All woody individuals from 5 cm diameter at 30 cm above ground level were identified and measured. Each individual was felled, the twigs thinner than 3cm were discarded while the larger branches and the trunks, both with bark, were weighted separately. After that, 2.5cm transverse sections of the trunk with bark were taken at 0, 25, 50, 75 and 100% of the length. A similar sample was also taken at the base of each branch. A total of 47 species in 35 genera and 24 families were found, with an average density of 673 individuals per ha. The diameter distribution showed a reversed-J shape with 67% of the individuals up to 13cm, while the maximum diameter was 32.30cm. Seven species represented 72% of the total biomass. In general, the species with higher production per tree were among those with higher production per ha. This content was distributed by diameter classes, reaching a maximum of 2.5ton/ha between 9 to 13cm and then, decreasing to 0.96 ton/ha between 29 to 33cm diameter. Carbon sequestering was 6.2ton/ha (until the actual stage of cerrado) based on an average 50% carbon content in the dry matter. The heat combustion of the wood varied from 18,903kj/kg to 20,888kj/kg with an average of 19,942kj/kg. The smaller diameter classes fix more carbon due to the large number of small plants per ha. But, for a species that reached larger dimensions and contained individuals in all diameter classes, Vochysia thyrsoidea, one can verify an increase in carbon fixation from 1.41 kg/ha in the first class (5 to 9cm) to 138,3kg/ha in the last (25 to 33cm). That indicates that it is possible to select species that reach larger size with a higher capacity of carbon accumulation per plant. The species that reached larger dimensions, with a production per tree above average and had high calorific power values were Dalbergia miscolobium, Pterodon pubescens and Sclerolobium paniculatum. These species have potential for use in fuelwood plantations and sustainable management.
Resumo:
Several degraded areas can be found along the Highway MG-010 that crosses the Espinhaço Mountain Biosphere Reserve in the Brazilian state of Minas Gerais. Restoration by planting the legume Cajanus cajan was implemented in some of these areas. The present study compares plant species richness, diversity, abundance, equitability, similarity, and soil composition between restored and non-restored areas, in an attempt to evaluate the effectiveness of the use of C. cajan in the restoration process in the mountain environment. Each treatment (restored and non-restored) had four sampling areas, each with three 300 m² plots. We counted and identified every individual plant found within these plots. We also collected soil from the superficial layer (0-10 cm) of each sampling area in both treatments. The areas where C. cajan was planted revealed lower species richness, diversity, and plant abundance. The soil of these areas also contained higher levels of Phosphorus and Magnesium. Plant equitability and similarity between plots and other soil components (pH, Nitrogen, Aluminum, Calcium, Potassium, H+Al, sum of bases - SB, cation exchange capacity - CTC, base saturation - V%, aluminum saturation - M%) did not differ between the two treatments. Contrary to the expectations, soil enhancement in the quartzitic soil poor in nutrients in the rupestrian fields can facilitate the invasion by exotic plants, which are not adapted to the lack of nutrients. As it appears, the use of C. cajan in restoration projects represents a mistake and future restoration plans should avoid the use of exotic species, given that they may cause negative effects on the native plant community, as demonstrated here in the rupestrian fields.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.