104 resultados para Biological Nitrogen Removal

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to evaluate the influence of airflow (0.25, 0.50 and 0.75 L.L-1.min-1) and cycle time (10.45 h, 14.25 h and 17.35 h) on a sequencing batch reactor (SBR) performance in promoting nitrification and denitrification of poultry slaughterhouse wastewater. The operational stages included feeding, aerobic and anoxic reactions, sedimentation and discharge. SBR was operated in a laboratory scale with a working volume of 4 L, keeping 25% of biomass retained inside the reactor as inoculum for the next batch. In the anoxic stage, C: N ratio was maintained between 5 and 6 by adding cassava starch wastewater. A factorial design (22) with five repetitions was designed at the central point to evaluate the influence of cycle time and airflow on total inorganic nitrogen removal (N-NH4++N-NO2-+N-NO3-) and in the whole process (nitrification and denitrification). The highest total inorganic nitrogen removal (93.3%) was observed for airflow of 0.25 L.L-1.min‑1 and a cycle time of 14.25 h. At the end of the experiment, the sludge inside the reactor was characterized by fluorescent in situ hybridization (FISH), indicating the presence of ammonia and nitrite oxidizing bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seeds with a high concentration of P or Mo can improve the growth and N accumulation of the common bean (Phaseolus vulgaris L.), but the effect of enriched seeds on biological N2 fixation has not been established yet. This study aimed to evaluate the effect of seeds enriched with P and Mo on growth and biological N2 fixation of the common bean by the 15N isotope dilution technique. An experiment was carried out in pots in a 2 x 3 x 2 x 2 factorial design in randomized blocks with four replications, comprising two levels of soil applied P (0 and 80 mg kg-1), three N sources (without N, inoculated with rhizobia, and mineral N), two seed P concentrations (low and high), and two seed Mo concentrations (low and high). Non-nodulating bean and sorghum were used as non-fixing crops. The substrate was 5.0 kg of a Red Latosol (Oxisol) previously enriched with 15N and mixed with 5.0 kg of sand. Plants were harvested 41 days after emergence. Seeds with high P concentration increased the growth and N in shoots, particularly in inoculated plants at lower applied P levels. Inoculated plants raised from high P seeds showed improved nodulation at both soil P levels. Higher soil P levels increased the percentage of N derived from the atmosphere (%Ndfa) in bean leaves. Inoculation with the selected strains increased the %Ndfa. High seed P increased the %Ndfa in inoculated plants at lower soil P levels. High seed Mo increased the %Ndfa at lower soil P levels in plants that did not receive inoculation or mineral N. It is concluded that high seed P concentration increases the growth, N accumulation and the contribution of the biological N2 fixation in the common bean, particularly in inoculated plants grown at lower soil P availability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genotypic differences on growth and yield of common bean (Phaseolus vulgaris L.) in response to P supply were evaluated in a field experiment under biological N2 fixation. Eight cultivars were grown at two levels of applied P (12 and 50 kg ha-1 of P -- P1 and P2 respectively), in randomized block design in factorial arrangement. Vegetative biomass was sampled at three ontogenetic stages. The effects of genotype and phosphorus were significant for most traits, but not the genotype ´ phosphorus interaction. The cultivars presented different patterns of biomass production and nutrient accumulation, particularly on root system. At P1, P accumulation persisted after the beginning of pod filling, and P translocation from roots to shoots was lower. The nodule senescence observed after flowering might have reduced N2 fixation during pod filling. The responses of vegetative growth to the higher P supply did not reflect with the same magnitude on yield, which increased only 6% at P2; hence the harvest index was lower at P2. The cultivars with highest yields also presented lower grain P concentrations. A sub-optimal supply of N could have limited the expression of the yield potential of cultivars, reducing the genotypic variability of responses to P levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the efficiency of a sequencing batch reactor (SBR) on biological removal of nitrogen from cattle slaughterhouse wastewater by nitrification/denitrification processes. The effects of initial concentration of ammoniacal nitrogen were investigated at 100; 150 and 200 mg L-1 and air flow rate at 0.125; 0.375 and 0.625 L min¹ Lreactor-1 on the nitrogen compounds removal, by a Central Composite Rotational Design (CCRD) configuration. There were variations from 9.2 to 94.9%, 4.0 to 19.6% and 20.8 to 92.0% in the conversion of ammoniacal nitrogen to nitrate and nitrite concentration and removal of total nitrogen, respectively. The increase of air flow rate and decrease of the initial concentration of ammoniacal nitrogen resulted in higher efficiencies of total nitrogen removal, as well as the conversion of ammoniacal nitrogen to nitrate. During the pre-established intervals of this study, the removal and conversion efficiencies of nitrogen compounds above 85% were achieved in air flow rate variations from 0.375 to 0.725 L min-1 Lreactor-1 and initial concentration of ammoniacal nitrogen from 80 to 200 mg L-1. On denitrification process, we obtained efficiencies from 91.5 to 96.9% on the removal of nitrite/nitrate and from 78.3 to 87.9% on the removal of organic matter.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The biological nitrogen fixation is an alternative to supply the nitrogen needed for maize. The objective of this study was to evaluate the development and yield of maize in response to inoculation with Azospirillum associated with nitrogen fertilization. We conducted two field experiments in the summer harvest, the first in the 2000/2001 crop year in the region of Marechal Cândido Rondon, under conventional tillage, and second in the 2002/2003 agricultural year in the region of Cascavel, under no tillage. The experimental design in both experiments was a randomized complete block, with four replications, 2x2x2 factorial, with two levels of nitrogen at sowing (zero and 20 kg ha-1), two levels of inoculum (zero and 200 g ha-1) and two levels of nitrogen in topdressing (zero and 100 kg ha-1). There was evaluated the height of ear insertion, total plant height, leaf N content, shoot dry biomass and grain yield. The height of ear insertion and total plant height were not influenced by the factors under study. Nitrogen fertilization at sowing increased the leaf N content, causing the opposite effect when combined with inoculation. Inoculation with Azospirillum in the absence of nitrogen, provide productivity increases of 15.4% and 7.4% for 2000/2001 and 2002/2003 crops, respectively. The inoculation provided productivity similar to that obtained with 100 kg ha-1 in topdressing in crop 2000/2001, while in association with the topdressing, reduced productivity and shoot dry biomass in crop 2002/2003.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In Brazil, Bradyrhizobium inoculation has successfully replaced the use of N fertilizer on soybean [Glycine max (L) Merr.] crops. However, with the expansion of no-tillage cropping systems in the Cerrados region, the idea that it is necessary to use small N rates at the sowing to overcome problems related with N immobilization has become widespread, mainly when soybean is cultivated after a non-legume crop. In this study we examined soybean response to small rates of N fertilizer under no-tillage (NT) and conventional tillage (CT) systems. Four experiments (a completely randomized block with five replicates) were carried out in a red yellow oxisol, during the periods of 1998/1999 and 1999/ 2000, under NT and CT. The treatments consisted of four urea rates (0, 20, 30 and 40 kg ha-1 N). All treatments were inoculated with Bradyrhizobium japonicum strains SEMIA 5080 and SEMIA 5079, in the proportion 1 kg of peat inoculant (1,5 x 10(9) cells g-1) per 50 kg of seeds. In both experiments, soybean was cultivated after corn and the N fertilizer was band applied at sowing. In all experiments, N rates promoted reductions of up to 50 % in the nodule number at 15 days after the emergence. Regardless of the management system, these reductions disappeared at the flowering stage and there was no effect of N rates on either the number and dry weight of nodules or on soybean yields. Therefore, in the Brazilian Cerrados, when an efficient symbiosis is established, it is not necessary to apply starter N rates on soybean, even when cultivated under notillage systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Nitrogen removal in soybean grains at harvest may exceed biological N2 fixation, particularly if grain yields are as high as typically achieved on "Terra Rossa" soils of Eastern Paraguay. Applying N fertilizer or coating seeds with rhizobial inoculants that enhance nodulation may represent a way of balancing the N budget. However, the effects of such treatments appear to be highly site-specific. The objective of this study was to examine the effects of N application (N) and rhizobial inoculation (I) on nodulation, N accumulation and soybean yields in Eastern Paraguay. Field experiments were conducted in two consecutive soybean seasons. Dry conditions in the first year delayed sowing and reduced plant number m-2 and pod number plant-1. Grain yields were generally below 2 t ha-1 but the +N+I treatment increased yields by about 75%. In the second year favorable conditions resulted in yields of around 4 t ha-1 and the treatments had no effect. Nitrogen accumulation was higher in the first year and could therefore not explain the observed yield differences between years and treatment combinations. The positive effect of the +N+I treatment in year one was associated with a more rapid root growth which could have reduced susceptibility to intermittent drought stress. Nodule biomass decreased between flowering and pod setting stages in the +I treatment whereas further increases in nodule biomass in the -I treatment may have led to competition for assimilates between nodules and developing pods. Based on these preliminary results we conclude that N application and seed inoculation can offer short-term benefits in unfavorable years without negative effects on yield in favorable years.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The process of biological nitrogen fixation (BNF), performed by symbiotic nitrogen fixing bacteria with legume species, commonly known as α and β rhizobia, provides high sustainability for the ecosystems. Its management as a biotechnology is well succeeded for improving crop yields. A remarkable example of this success is the inoculation of Brazilian soybeans with Bradyrhizobium strains. Rhizobia produce a wide diversity of chemical structures of exopolysaccharides (EPS). Although the role of EPS is relatively well studied in the process of BNF, their economic and environmental potential is not yet explored. These EPS are mostly species-specific heteropolysaccharides, which can vary according to the composition of sugars, their linkages in a single subunit, the repeating unit size and the degree of polymerization. Studies have showed that the EPS produced by rhizobia play an important role in the invasion process, infection threads formation, bacteroid and nodule development and plant defense response. These EPS also confer protection to these bacteria when exposed to environmental stresses. In general, strains of rhizobia that produce greater amounts of EPS are more tolerant to adverse conditions when compared with strains that produce less. Moreover, it is known that the EPS produced by microorganisms are widely used in various industrial activities. These compounds, also called biopolymers, provide a valid alternative for the commonly used in food industry through the development of products with identical properties or with better rheological characteristics, which can be used for new applications. The microbial EPS are also able to increase the adhesion of soil particles favoring the mechanical stability of aggregates, increasing levels of water retention and air flows in this environment. Due to the importance of EPS, in this review we discuss the role of these compounds in the process of BNF, in the adaptation of rhizobia to environmental stresses and in the process of soil aggregation. The possible applications of these biopolymers in industry are also discussed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study evaluated the effect of hairy vetch (Vicia villosa Roth) as cover crop on maize nutrition and yield under no tillage using isotope techniques. For this purpose, three experiments were carried out: 1) quantification of biological nitrogen fixation (BNF) in hairy vetch; 2) estimation of the N release rate from hairy vetch residues on the soil surface; 3) quantification of 15N recovery by maize from labeled hairy vetch under three rates of mineral N fertilization. This two-year field experiment was conducted on a sandy Acrisol (FAO soil classification) or Argissolo Vermelho distrófico arênico (Brazilian Soil Classification), at a mean annual temperature of 18 ºC and mean annual rainfall of 1686 mm. The experiment was arranged in a double split-plot factorial design with three replications. Two levels of hairy vetch residue (50 and 100 % of the aboveground biomass production) were distributed on the surface of the main plots (5 x 12 m). Maize in the sub-plots (5 x 4 m) was fertilized with three N rates (0, 60, and 120 kg ha-1 N), with urea as N source. The hairy vetch-derived N recovered by maize was evaluated in microplots (1.8 x 2.2 m). The BFN of hairy vetch was on average 72.4 %, which represents an annual input of 130 kg ha-1 of atmospheric N. The N release from hairy vetch residues was fast, with a release of about 90 % of total N within the first four weeks after cover crop management and soil residue application. The recovery of hairy vetch 15N by maize was low, with an average of 12.3 % at harvest. Although hairy vetch was not directly the main source of maize N nutrition, the crop yield reached 8.2 Mg ha-1, without mineral fertilization. There was an apparent synergism between hairy vetch residue application and the mineral N fertilization rate of 60 kg ha-1, confirming the benefits of the combination of organic and inorganic N sources for maize under no tillage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Chemical fertilisers are rarely avaiable to poor farmers, for whom the nitrogen (N) is often the most limiting element for cereal grain production. The objective of this study was to quantify the contribution of biological nitrogen fixation (BNF) to groundnut (Arachis hypogaea) and velvet bean (Mucuna pruriens) crops using the 15N natural abundance (delta15N) technique and to determine their residual effect and that of a natural fallow, on growth and N accumulation by two rustic maize varieties. The contribution of BNF calculated from delta15N data was 40.9, 59.6 and 30.9 kg ha-1, for groundnut, velvet bean and the natural fallow, respectively. The only legume grain harvested was from the groundnut, which yielded approximately 1.000 kg ha-1. The subsequent maize varieties ("Sol de Manhã" and "Caiana Sobralha") yielded between 1.958 and 2.971 kg ha-1, and were higher after velvet bean for both maize varieties and "Sol da Manhã" groundnut, followed by "Caiana" after groundnut and, finally, the natural fallow. For a small-holder producer the most attractive system is the groundnut followed by maize, as, in this treatment, both groundnut and maize grain harvest are possible. However, a simple N balance calculation indicated that the groundnut-maize sequence would, in the long term, deplete soil N reserves, while the velvet bean-maize sequence would lead to a build up of soil nitrogen.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study aimed to genetically characterize four new Rhizobium strains, and to evaluate their nodulation and fixation capacity compared to commercial strains and to native rhizobia population of a Brazilian Rhodic Hapludox. Two experiments were carried out in randomized blocks design, under greenhouse conditions, in 2007. In the first experiment, the nodulation and nitrogen fixation capacity of new strains were evaluated, in comparison to the commercial strains CIAT-899 and PRF-81 and to native soil population. It was carried out in plastic tubes filled with vermiculite. DNA extractions and PCR sequencing of the intergenic space were made from the isolated pure colonies, in order to genetically characterize the strains and the native rhizobia population. In the second experiment, the nodulation and productivity of common beans Perola cultivar were determined, with the use of evaluated strains, alone or in mixture with PRF-81 strain. It was carried out in pots filled with soil. The native soil population was identified as Rhizobium sp. and was inefficient in nitrogen fixation. Three different Rhizobium species were found among the four new strains. The LBMP-4BR and LBMP-12BR new strains are among the ones with greatest nodulation and fixation capacity and exhibit differential responses when mixed to PRF-81.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to isolate and characterize rhizobia from nodules of Centrolobium paraense and to evaluate their symbiotic efficiency. Soil samples collected from four sites of the Roraima Cerrado, Brazil, were used to cultivate C. paraense in order to obtain nodules. Isolates (178) were obtained from 334 nodules after cultivation on medium 79. Twenty-five isolates belonging to six morphological groups were authenticated using Vigna unguiculata and they were characterized by 16S rRNA. Isolates identified as Bradyrhizobium were further characterized using rpoB gene sequencing. A greenhouse experiment was carried out with C. paraense to test the 18 authenticated isolates. Approximately 90% of the isolates grew slowly in medium 79. The 16S rRNA analysis showed that 14 authenticated isolates belong to the genus Bradyrhizobium, and rpoB indicated they constitute different groups compared to previously described species. Only four of the 11 fast-growing isolates nodulated V. unguiculata, two of which belong to Rhizobium, and two to Pleomorphomonas, which was not previously reported as a nodulating genus. The Bradyrhizobium isolates ERR 326, ERR 399, and ERR 435 had the highest symbiotic efficiency on C. paraense and showed a contribution similar to the nitrogen treatment. Centrolobium paraense is able to nodulate with different rhizobium species, some of which have not yet been described.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The objective of this work was to estimate the amounts of N fixed by cowpea in a traditional system and by cowpea and gliricidia in an agroforestry system in the Brazilian Northeast semiarid. The experiment was carried out in a randomized complete block design, in a split-plot arrangement, with four replicates, in the semiarid region of the state of Paraíba, Brazil. Plots consisted of agroforestry and traditional systems (no trees), and split-plots of the three crops planted between the tree rows in the agroforestry system. To estimate N fixation, plant samples were collected in the fourth growth cycle of the perennial species and in the fourth planting cycle of the annual species. In the agroforestry system with buffel grass and prickly-pear cactus, gliricidia plants symbiotically fix high proportions of N (>50%) and contribute with higher N amounts (40 kg ha-1 in leaves) than in the traditional system (11 kg ha-1 in grain and 18 kg ha-1 in straw). In the agroforestry system with maize and cowpea, gliricidia plants do not fix nitrogen, and N input is limited to the fixation by cowpea (2.7 kg ha-1), which is lower than in the traditional system due to its lower biomass production.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The high load of nitrogen present in swine wastewater is one of the biggest management challenges of the activity. The Anammox process emerges as a good alternative for biological removal of nitrogen. This study aims to acclimate sludge collected from swine effluent treatment systems to establish the Anammox process. Two sludge samples were collected at Embrapa Swine and Poultry, Concordia - SC, Brazil, one from the bottom of an inactive anaerobic pond (inoculum A) and another from an aeration tank (inoculum B). Both were acclimated until the depletion of NO3-N, being subsequently inoculated in two reactors (Reactor A - Inoculum A and Reactor B - Inoculum B). The Reactor A showed activity after 110 days of operation, while the Reactor B needed 170 days. The difference in the start-up time could be explained by the different environmental conditions to which each sludge was submitted. FISH and PCR analyses confirmed the presence of microorganisms with Anammox activity, demonstrating that the sludge of swine wastewater treatment systems is a good source of inoculum for the development of the Anammox process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the high energy requirement and demand for non-renewable resources for the production of chemical fertilizers, added also to the environmental impact caused by the use of such products, it is important to intensify research on bio-based agricultural inputs. The use of nitrogen-fixing endophytic and phosphate solubilizing bacteria can provide these nutrients to the plants from the air and poorly soluble phosphorus sources, such as phosphate rock. The objective of this study was to evaluate the nutrition and initial growth of maize (Zea mays L.) in response to the inoculation of nitrogen-fixing and rock phosphate solubilizing endophytic bacteria, in single or mixed formulation, applied with vermicompost. The treatments containing bacteria, both diazotrophic and phosphate solubilizing, when compared to controls, showed higher levels of leaf nitrogen and phosphorus in maize, as well as higher growth characteristics. The application of vermicompost showed synergistic effect when combined with endophytic bacteria. Thus, the innovation of the combination of the studied factors may contribute to the early development of maize.