10 resultados para Bioengineering and regenerative medicine

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated that carbon nanotubes (CNTs) associated with sodium hyaluronate (HY-CNTs) accelerate bone repair in the tooth sockets of rats. Before clinical application of HY-CNTs, it is important to assess their biocompatibility. Moreover, cardiac toxicity may be caused by the translocation of these particles to the blood stream. The aim of this study was to evaluate possible changes in cardiovascular function in male Wistar rats whose tooth sockets were treated with either CNTs or HY-CNTs (100 μg/mL, 0.1 mL). Blood pressure and heart rate were monitored in conscious rats 7 days after treatment. Cardiac function was evaluated using the Langendorff perfusion technique. The data showed no changes in blood pressure or heart rate in rats treated with either CNTs or HY-CNTs, and no significant changes in cardiac function were found in any of the groups. To confirm these findings, experiments were conducted in rats injected intraperitoneally with a high concentration of either CNTs or HY-CNTs (0.75 mg/kg). The same parameters were analyzed and similar results were observed. The results obtained 7 days following injection indicate that the administration of low concentrations of CNTs or HY-CNTs directly into tooth sockets did not cause any significant change in cardiovascular function in the rats. The present findings support the possibility of using these biocomposites in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The trypanosome evolution workshop, a joint meeting of the University of Exeter and the London School of Hygiene and Tropical Medicine, focused on topics relating to trypanosomatid and vector evolution. The meeting, sponsored by The Wellcome Trust, The Special Programme for Research and Training in Tropical Disease of World Health Organization and the British Section of the Society of Protozoologists, brought together an international group of experts who presented papers on a wide range of topics including parasite and vector phylogenies, molecular methodology and relevant biogeographical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global malaria situation has scarcely improved in the last 100 years, despite major advances in our knowledge of the basic biology, epidemiology and clinical basis of the disease. Effective malaria control, leading to a significant decrease in the morbidity and mortality attributable to malaria, will require a multidisciplinary approach. New tools - drugs, vaccine and insecticides - are needed but there is also much to be gained by better use of existing tools: using drugs in combination in order to slow the development of drug resistance; targeting resources to areas of greatest need; using geographic information systems to map the populations at risk and more sophisticated marketing techniques to distribute bed nets and insecticides. Sustainable malaria control may require the deployment of a highly effective vaccine, but there is much that can be done in the meantime to reduce the burden of disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the recent scientific research progress on homeopathy. METHODOLOGY: Homeopathy was evaluated in terms of its clinical research; in vitro research, and physical foundations. The Medline database was the main reference source for the present research, concerning data of approximately the last 10 years. Secondary references (not available in this database) were obtained by means of direct requests to authors listed in the primary references. RESULTS: Clinical studies and in vitro research indicate the inefficacy of homeopathy. Some few studies with positive results are questionable because of problems with the quality and lack of appropriate experimental controls in these studies. The most recent meta-analyses on the topic yielded negative results. One of the few previous meta-analyses with positive results had serious publication bias problems, and its results were later substantially reconsidered by the main authors. The sparse in vitro homeopathic research with positive results has not been replicated by independent researchers, had serious methodological flaws, or when replicated, did not confirm the initial positive results. A plausible mechanism for homeopathic action is still nonexistent, and its formulation, by now, seems highly unlikely. CONCLUSIONS: As a result of the recent scientific research on homeopathy, it can be concluded that ample evidence exists to show that the homeopathic therapy is not scientifically justifiable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AbstractThe types of compounds used in the production of biomaterials, namely metals, ceramics, synthetic and natural polymers, as well as composite materials, are discussed in the present work, together with details of their application and evolution from biocompatible to bioactive, biodegradable, and biomimetic clinical products. The chemical structure, the three-dimensional structure, and the molecular organization of compounds frequently used in the manufacture of relevant classes of biomaterials are discussed, along with their advantages and some of their major limitations in specific clinical applications. The main chemical, physical, mechanical, and biological requirements of biomaterials categories are presented, as well as typical tissular responses to implanted biomaterials. Reasons for the recent economic growth of the biomaterials market segment are addressed, and the most successful biomaterial categories are discussed, emphasizing areas such as orthopedic and cardiovascular implants, regenerative medicine, tissue engineering, and controlled drug release devices. Finally, the need for the development of innovative and more accessible biomaterials, due to the expected increase in the number of elderly people and the growing trend of personalized medical procedures, is pointed out.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are increasingly being proposed as a therapeutic option for treatment of a variety of different diseases in human and veterinary medicine. Stem cells have been isolated from feline bone marrow, however, very few data exist about the morphology of these cells and no data were found about the morphometry of feline bone marrow-derived MSCs (BM-MSCs). The objectives of this study were the isolation, growth evaluation, differentiation potential and characterization of feline BM-MSCs by their morphological and morphometric characteristics. in vitro differentiation assays were conducted to confirm the multipotency of feline MSC, as assessed by their ability to differentiate into three cell lineages (osteoblasts, chondrocytes, and adipocytes). To evaluate morphological and morphometric characteristics the cells are maintained in culture. Cells were observed with light microscope, with association of dyes, and they were measured at 24, 48, 72 and 120h of culture (P1 and P3). The non-parametric ANOVA test for independent samples was performed and the means were compared by Tukey's test. On average, the number of mononuclear cells obtained was 12.29 (±6.05x10(6)) cells/mL of bone marrow. Morphologically, BM-MSCs were long and fusiforms, and squamous with abundant cytoplasm. In the morphometric study of the cells, it was observed a significant increase in average length of cells during the first passage. The cell lengths were 106.97±38.16µm and 177.91±71.61µm, respectively, at first and third passages (24 h). The cell widths were 30.79±16.75 µm and 40.18±20.46µm, respectively, at first and third passages (24 h).The nucleus length of the feline BM-MSCs at P1 increased from 16.28µm (24h) to 21.29µm (120h). However, at P3, the nucleus length was 26.35µm (24h) and 25.22µm (120h). This information could be important for future application and use of feline BM-MSCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The atrioventricular (AV) node is permanently damaged in approximately 3% of congenital heart surgery operations, requiring implantation of a permanent pacemaker. Improvements in pacemaker design and in alternative treatment modalities require an effective in vivo model of complete heart block (CHB) before testing can be performed in humans. Such a model should enable accurate, reliable, and detectable induction of the surgical pathology. Through our laboratory’s efforts in developing a tissue engineering therapy for CHB, we describe here an improved in vivo model for inducing chronic AV block. The method employs a right thoracotomy in the adult rabbit, from which the right atrial appendage may be retracted to expose an access channel for the AV node. A novel injection device was designed, which both physically restricts needle depth and provides electrical information via electrocardiogram interface. This combination of features provides real-time guidance to the researcher for confirming contact with the AV node, and documents its ablation upon formalin injection. While all animals tested could be induced to acute AV block, those with ECG guidance were more likely to maintain chronic heart block >12 h. Our model enables the researcher to reproduce both CHB and the associated peripheral fibrosis that would be present in an open congenital heart surgery, and which would inevitably impact the design and utility of a tissue engineered AV node replacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mesenchymal stem cells (MSC) are multipotential nonhematopoietic progenitor cells capable of differentiating into multiple mesenchymal tissues. MSC are able to reconstitute the functional human hematopoietic microenvironment and promote engraftment of hematopoietic stem cells. MSC constitutively express low levels of major histocompatibility complex-I molecules and do not express costimulatory molecules such as CD80, CD86 or CD40, thus lacking immunogenicity. Furthermore, they are able to suppress T- and B-lymphocyte activation and proliferation and may also affect dendritic cell maturation. Based on these properties, MSC are being used in regenerative medicine and also for the treatment of autoimmune diseases and graft-versus-host disease. On the other hand, MSC from patients diagnosed with myelodysplastic syndromes or multiple myeloma display abnormalities, which could play a role in the physiopathology of the disease. Finally, in patients with immune thrombocytopenic purpura, MSC have a reduced proliferative capacity and a lower inhibitory effect on T-cell proliferation compared with MSC from healthy donors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical coherence tomography (OCT) is a promising medical imaging technique that uses light to capture real-time cross-sectional images from biological tissues in micrometer resolution. Commercially available optical coherence tomography systems are employed in diverse applications, including art conservation and diagnostic medicine, notably in cardiology and ophthalmology. Application of this technology in the brain may enable distinction between white matter and gray matter, and obtainment of detailed images from within the encephalon. We present, herein, the in vivo implementation of OCT imaging in the rat brain striatum. For this, two male 60-day-old rats (Rattus norvegicus, Albinus variation, Wistar) were stereotactically implanted with guide cannulas into the striatum to guide a 2.7-French diameter high-definition OCT imaging catheter (Dragonfly™, St. Jude Medical, USA). Obtained images were compared with corresponding histologically stained sections to collect imaging samples. A brief analysis of OCT technology and its current applications is also reported, as well as intra-cerebral OCT feasibility on brain mapping during neurosurgical procedures.