12 resultados para Bayesian Normal Mixture Model, Data Binning, Data Analysis
em Scielo Saúde Pública - SP
Resumo:
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
Resumo:
AbstractObjective:To evaluate the association between Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC).Materials and Methods:The patients were evaluated by ultrasonography-guided fine needle aspiration cytology. Typical cytopathological aspects and/or classical histopathological findings were taken into consideration in the diagnosis of HT, and only histopathological results were considered in the diagnosis of PTC.Results:Among 1,049 patients with multi- or uninodular goiter (903 women and 146 men), 173 (16.5%) had cytopathological features of thyroiditis. Thirty-three (67.4%) out of the 49 operated patients had PTC, 9 (27.3%) of them with histopathological features of HT. Five (31.3%) out of the 16 patients with non-malignant disease also had HT. In the groups with HT, PTC, and PCT+HT, the female prevalence rate was 100%, 91.6%, and 77.8%, respectively. Mean age was 41.5, 43.3, and 48.5 years, respectively. No association was observed between the two diseases in the present study where HT occurred in 31.1% of the benign cases and in 27.3% of malignant cases (p = 0.8).Conclusion:In spite of the absence of association between HT and PCT, the possibility of malignancy in HT should always be considered because of the coexistence of the two diseases already reported in the literature.
Resumo:
GLUT4 protein expression in white adipose tissue (WAT) and skeletal muscle (SM) was investigated in 2-month-old, 12-month-old spontaneously obese or 12-month-old calorie-restricted lean Wistar rats, by considering different parameters of analysis, such as tissue and body weight, and total protein yield of the tissue. In WAT, a ~70% decrease was observed in plasma membrane and microsomal GLUT4 protein, expressed as µg protein or g tissue, in both 12-month-old obese and 12-month-old lean rats compared to 2-month-old rats. However, when plasma membrane and microsomal GLUT4 tissue contents were expressed as g body weight, they were the same. In SM, GLUT4 protein content, expressed as µg protein, was similar in 2-month-old and 12-month-old obese rats, whereas it was reduced in 12-month-old obese rats, when expressed as g tissue or g body weight, which may play an important role in insulin resistance. Weight loss did not change the SM GLUT4 content. These results show that altered insulin sensitivity is accompanied by modulation of GLUT4 protein expression. However, the true role of WAT and SM GLUT4 contents in whole-body or tissue insulin sensitivity should be determined considering not only GLUT4 protein expression, but also the strong morphostructural changes in these tissues, which require different types of data analysis.
Resumo:
This study sought to evaluate the acceptance of "dulce de leche" with coffee and whey. The results were analyzed through response surface, ANOVA, test of averages, histograms, and preference map correlating the global impression data with results of physical, physiochemical and sensory analysis. The response surface methodology, by itself, was not enough to find the best formulation. For ANOVA, test of averages, and preference map it was observed that the consumers' favorite "dulce de leche" were those of formulation 1 (10% whey and 1% coffee) and 2 (30% whey and 1% coffee), followed by formulation 9 (20% whey and 1.25% coffee). The acceptance of samples 1 and 2 was influenced by the higher acceptability in relation to the flavor and for presenting higher pH, L*, and b* values. It was observed that samples 1 and 2 presented higher purchase approval score and higher percentages of responses for the 'ideal' category in terms of sweetness and coffee flavor. It was found that consumers preferred the samples with low concentrations of coffee independent of the concentration of whey thus enabling the use of whey and coffee in the manufacture of dulce de leche, obtaining a new product.
Resumo:
This paper analyses the associations between Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) on the prevalence of schistosomiasis and the presence of Biomphalaria glabrata in the state of Minas Gerais (MG), Brazil. Additionally, vegetation, soil and shade fraction images were created using a Linear Spectral Mixture Model (LSMM) from the blue, red and infrared channels of the Moderate Resolution Imaging Spectroradiometer spaceborne sensor and the relationship between these images and the prevalence of schistosomiasis and the presence of B. glabrata was analysed. First, we found a high correlation between the vegetation fraction image and EVI and second, a high correlation between soil fraction image and NDVI. The results also indicate that there was a positive correlation between prevalence and the vegetation fraction image (July 2002), a negative correlation between prevalence and the soil fraction image (July 2002) and a positive correlation between B. glabrata and the shade fraction image (July 2002). This paper demonstrates that the LSMM variables can be used as a substitute for the standard vegetation indices (EVI and NDVI) to determine and delimit risk areas for B. glabrata and schistosomiasis in MG, which can be used to improve the allocation of resources for disease control.
Resumo:
In this article a two-dimensional transient boundary element formulation based on the mass matrix approach is discussed. The implicit formulation of the method to deal with elastoplastic analysis is considered, as well as the way to deal with viscous damping effects. The time integration processes are based on the Newmark rhoand Houbolt methods, while the domain integrals for mass, elastoplastic and damping effects are carried out by the well known cell approximation technique. The boundary element algebraic relations are also coupled with finite element frame relations to solve stiffened domains. Some examples to illustrate the accuracy and efficiency of the proposed formulation are also presented.
Resumo:
Plant growth analysis presents difficulties related to statistical comparison of growth rates, and the analysis of variance of primary data could guide the interpretation of results. The objective of this work was to evaluate the analysis of variance of data from distinct harvests of an experiment, focusing especially on the homogeneity of variances and the choice of an adequate ANOVA model. Data from five experiments covering different crops and growth conditions were used. From the total number of variables, 19% were originally homoscedastic, 60% became homoscedastic after logarithmic transformation, and 21% remained heteroscedastic after transformation. Data transformation did not affect the F test in one experiment, whereas in the other experiments transformation modified the F test usually reducing the number of significant effects. Even when transformation has not altered the F test, mean comparisons led to divergent interpretations. The mixed ANOVA model, considering harvest as a random effect, reduced the number of significant effects of every factor which had the F test modified by this model. Examples illustrated that analysis of variance of primary variables provides a tool for identifying significant differences in growth rates. The analysis of variance imposes restrictions to experimental design thereby eliminating some advantages of the functional growth analysis.
The combined use of reflectance, emissivity and elevation Aster/Terra data for tropical soil studies
Resumo:
Reflectance, emissivity and elevation data of the sensor ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer)/Terra were used to characterize soil composition variations according to the toposequence position. Normalized data of SWIR (shortwave infrared) reflectance and TIR (thermal infrared) emissivity, coupled to a soil-fraction image from a spectral mixture model, were evaluated to separate bare soils from nonphotosynthetic vegetation. Regression relationships of some soil properties with reflectance and emissivity data were then applied on the exposed soil pixels. The resulting estimated values were plotted on the ASTER-derived digital elevation model. Results showed that the SWIR bands 5 and 6 and the TIR bands 10 and 14 measured the clay mineral absorption band and the quartz emissivity feature, respectively. These bands improved also the discrimination between nonphotosynthetic vegetation and soils. Despite the differences in pixel size and field sampling size, some soil properties were correlated with reflectance (R² of 0.65 for Al2O3 in band 6; 0.61 for Fe2O3 in band 3) and emissivity (R² of 0.65 for total sand fraction in the 10/14 band ratio). The combined use of reflectance, emissivity and elevation data revealed variations in soil composition with topography in specific parts of the landscape. From higher to lower slope positions, a general decrease in Al2O3 and increase in total sand fraction was observed, due to the prevalence of Rhodic Acrustox at the top and its gradual transition to Typic Acrustox at the bottom.
Resumo:
In general, laboratory activities are costly in terms of time, space, and money. As such, the ability to provide realistically simulated laboratory data that enables students to practice data analysis techniques as a complementary activity would be expected to reduce these costs while opening up very interesting possibilities. In the present work, a novel methodology is presented for design of analytical chemistry instrumental analysis exercises that can be automatically personalized for each student and the results evaluated immediately. The proposed system provides each student with a different set of experimental data generated randomly while satisfying a set of constraints, rather than using data obtained from actual laboratory work. This allows the instructor to provide students with a set of practical problems to complement their regular laboratory work along with the corresponding feedback provided by the system's automatic evaluation process. To this end, the Goodle Grading Management System (GMS), an innovative web-based educational tool for automating the collection and assessment of practical exercises for engineering and scientific courses, was developed. The proposed methodology takes full advantage of the Goodle GMS fusion code architecture. The design of a particular exercise is provided ad hoc by the instructor and requires basic Matlab knowledge. The system has been employed with satisfactory results in several university courses. To demonstrate the automatic evaluation process, three exercises are presented in detail. The first exercise involves a linear regression analysis of data and the calculation of the quality parameters of an instrumental analysis method. The second and third exercises address two different comparison tests, a comparison test of the mean and a t-paired test.
Resumo:
A mathematical model is proposed to analyze the effects of acquired immunity on the transmission of schistosomiasis in the human host. From this model the prevalence curve dependent on four parameters can be obtained. These parameters were estimated fitting the data by the maximum likelihood method. The model showed a good retrieving capacity of real data from two endemic areas of schistosomiasis: Touros, Brazil (Schistosoma mansoni) and Misungwi, Tanzania (S. haematobium). Also, the average worm burden per person and the dispersion of parasite per person in the community can be obtained from the model. In this paper, the stabilizing effects of the acquired immunity assumption in the model are assessed in terms of the epidemiological variables as follows. Regarded to the prevalence curve, we calculate the confidence interval, and related to the average worm burden and the worm dispersion in the community, the sensitivity analysis (the range of the variation) of both variables with respect to their parameters is performed.
Resumo:
Local head losses must be considered in estimating properly the maximum length of drip irrigation laterals. The aim of this work was to develop a model based on dimensional analysis for calculating head loss along laterals accounting for in-line drippers. Several measurements were performed with 12 models of emitters to obtain the experimental data required for developing and assessing the model. Based on the Camargo & Sentelhas coefficient, the model presented an excellent result in terms of precision and accuracy on estimating head loss. The deviation between estimated and observed values of head loss increased according to the head loss and the maximum deviation reached 0.17 m. The maximum relative error was 33.75% and only 15% of the data set presented relative errors higher than 20%. Neglecting local head losses incurred a higher than estimated maximum lateral length of 19.48% for pressure-compensating drippers and 16.48% for non pressure-compensating drippers.
Resumo:
The aim of the present study was to compare heart rate variability (HRV) at rest and during exercise using a temporal series obtained with the Polar S810i monitor and a signal from a LYNX® signal conditioner (BIO EMG 1000 model) with a channel configured for the acquisition of ECG signals. Fifteen healthy subjects aged 20.9 ± 1.4 years were analyzed. The subjects remained at rest for 20 min and performed exercise for another 20 min with the workload selected to achieve 60% of submaximal heart rate. RR series were obtained for each individual with a Polar S810i instrument and with an ECG analyzed with a biological signal conditioner. The HRV indices (rMSSD, pNN50, LFnu, HFnu, and LF/HF) were calculated after signal processing and analysis. The unpaired Student t-test and intraclass correlation coefficient were used for data analysis. No statistically significant differences were observed when comparing the values analyzed by means of the two devices for HRV at rest and during exercise. The intraclass correlation coefficient demonstrated satisfactory correlation between the values obtained by the devices at rest (pNN50 = 0.994; rMSSD = 0.995; LFnu = 0.978; HFnu = 0.978; LF/HF = 0.982) and during exercise (pNN50 = 0.869; rMSSD = 0.929; LFnu = 0.973; HFnu = 0.973; LF/HF = 0.942). The calculation of HRV values by means of temporal series obtained from the Polar S810i instrument appears to be as reliable as those obtained by processing the ECG signal captured with a signal conditioner.