59 resultados para Basic concepts
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT Particle density, gravimetric and volumetric water contents and porosity are important basic concepts to characterize porous systems such as soils. This paper presents a proposal of an experimental method to measure these physical properties, applicable in experimental physics classes, in porous media samples consisting of spheres with the same diameter (monodisperse medium) and with different diameters (polydisperse medium). Soil samples are not used given the difficulty of working with this porous medium in laboratories dedicated to teaching basic experimental physics. The paper describes the method to be followed and results of two case studies, one in monodisperse medium and the other in polydisperse medium. The particle density results were very close to theoretical values for lead spheres, whose relative deviation (RD) was -2.9 % and +0.1 % RD for the iron spheres. The RD of porosity was also low: -3.6 % for lead spheres and -1.2 % for iron spheres, in the comparison of procedures – using particle and porous medium densities and saturated volumetric water content – and monodisperse and polydisperse media.
Resumo:
Over the past two decades, soil ecotoxicologists have made strides in utilizing the basic concepts and advancements in soil zoology and ecology. They have applied the existing tools, and developed new ones to investigate how chemical contamination can affect soil ecosystems, including the degradation or destruction of soil quality and habitats or the diminishment of belowground biodiversity. Soil ecotoxicologists are applying a suite of standard protocols, originally developed as laboratory tests with single chemicals (e.g., pesticides), and further enhancing both the approaches and protocols for the assessment of contaminated lands. However, ecological relevance of some approaches remains unresolved. The authors discuss the main challenges for a coherent ecotoxicological assessment of soil ecosystems amid contaminated lands, and provide recommendations on how to integrate the effects of physical and chemical soil properties, the variations in the diversity of soil invertebrates, and the interactions among organisms of various trophic levels. The review examines new international approaches and test methods using examples from three continents (in particular research conducted in Brazil), and provides recommendations for improving ecological relevance of ecotoxicological investigations of contaminated lands.
Resumo:
The modern technological ability to handle large amounts of information confronts the chemist with the necessity to re-evaluate the statistical tools he routinely uses. Multivariate statistics furnishes theoretical bases for analyzing systems involving large numbers of variables. The mathematical calculations required for these systems are no longer an obstacle due to the existence of statistical packages that furnish multivariate analysis options. Here basic concepts of two multivariate statistical techniques, principal component and hierarchical cluster analysis that have received broad acceptance for treating chemical data are discussed.
Resumo:
The peroxyoxalate system is still one of the most efficient chemiluminescence reactions and the only one supposed to involve the "Chemically Initiated Electron Exchange Luminescence - CIEEL" mechanism, with proved high efficiency. Besides the academic interest in the elucidation of the mechanism of this complex reaction, the peroxyoxalate system has found a variety of applications in analytical chemistry. This review contains (i) a short introduction to basic concepts in chemiluminescence, (ii) a critical summary of mechanistic studies on the peroxyoxalate reaction, (iii) and some examples of analytical applications. Although there are some recent reviews on chemiluminescence, no specific critical revision on mechanistic and analytical features of the peroxyoxalate system has been published.
Resumo:
The aim of this work is to present a tutorial on Multivariate Calibration, a tool which is nowadays necessary in basically most laboratories but very often misused. The basic concepts of preprocessing, principal component analysis (PCA), principal component regression (PCR) and partial least squares (PLS) are given. The two basic steps on any calibration procedure: model building and validation are fully discussed. The concepts of cross validation (to determine the number of factors to be used in the model), leverage and studentized residuals (to detect outliers) for the validation step are given. The whole calibration procedure is illustrated using spectra recorded for ternary mixtures of 2,4,6 trinitrophenolate, 2,4 dinitrophenolate and 2,5 dinitrophenolate followed by the concentration prediction of these three chemical species during a diffusion experiment through a hydrophobic liquid membrane. MATLAB software is used for numerical calculations. Most of the commands for the analysis are provided in order to allow a non-specialist to follow step by step the analysis.
Resumo:
In this work we first introduce the reader to the basic concepts of biology, bioenergetics and biochemistry, concerning the area of cell biology. Then we explain what diauxism is and an example of this phenomenon, applied to S. cerevisiae, is presented. Finally, thermograms obtained by microcalorimetry, from S. cerevisiae that undergo diauxism, are discussed from a biochemical point of view.
Resumo:
One of the main problems in quantitative analysis of complex samples by x-ray fluorescence is related to interelemental (or matrix) effects. These effects appear as a result of interactions among sample elements, affecting the x-ray emission intensity in a non-linear manner. Basically, two main effects occur; intensity absorption and enhancement. The combination of these effects can lead to serious problems. Many studies have been carried out proposing mathematical methods to correct for these effects. Basic concepts and the main correction methods are discussed here.
Resumo:
The microwave oven became a common domestic equipment, due mainly to the short time spent to heat foods. One of the most interesting characteristics of the microwave oven is the selective heating. Different from the conventional oven, where the heating is not selective, the heating by microwave depends on the chemical nature of the matter. Many Students of Chemistry have no knowledge of the principles involved in this selective heating, in spite of the daily microwave oven use. The heating by microwave is feasible for chemistry courses. In discussions about the microwave absorption by the matter it is possible to explore chemical properties like: heat capacity, chemical bound, molecular structure, dipole moments, polarization and dielectric constant. This paper presents the basic principles involved in the microwave heating. It is proposed a simple and inexpensive experiment that could be developed in general chemistry courses, to illustrate the relationship between heating and the chemical properties of some solvents. Experiments to check the power of the microwave oven are also proposed.
Resumo:
The purpose of this paper is the development of simple strategies to teach basic concepts of atomic spectrometry. Metals present in samples found in the daily lives of students are determined by flame atomic emission spectrometry (FAES). FAES is an accurate, precise, and inexpensive analytical method often used for determining sodium, potassium, lithium, and calcium. Historical aspects and their contextualization for students are also presented and experiments with samples that do not require pre-treatment are described.
Resumo:
Affinity reactions have been used for specific detection of their complementary partners and an enormous variety of enzyme-linked immunosorbent assay (ELISA) formats are used in research and in routine serological tests. With the advent of the atomic force microscopy (AFM) technique, the immune reactions have been monitored by these devices. In the present article we focus on applications of AFM to immunoassays. After introducing the basic concepts of AFM, a brief discussion on the monitoring of the interactions between antigens and antibodies through both topographic image and biosensor systems is presented.
Resumo:
Crystalline structures of zeolites can be studied using different representations: the internal symmetry obtained by X-Ray or neutron diffraction crystallography techniques or a systematic analysis of the basic structural units which can be arranged to build the geometries of each kind of zeolite. In this work the basic concepts of three building units, SBU (Secondary Building Units), SSU (Structural SubUnits) and PBU (Periodic Building Units) are presented. The properties of the resulting crystalline structures are discussed (pores, cavities, channels), describing the influence of each one of these properties in processes of physical-chemical interest. Representative case studies of known zeolite crystalline structures are also discussed in terms of their space group classification.
Resumo:
Calibration transfer has received considerable attention in the recent literature. Several standardization methods have been proposed for transferring calibration models between equipments. The goal of this paper is to present a general revision of calibration transfer techniques. Basic concepts will be reviewed, as well as the main advantages and drawbacks of each technique. A case study based on a set of 80 NIR spectra of maize samples recorded on two different instruments is used to illustrate the main calibration transfer techniques (direct standardization, piecewise direct standardization, orthogonal signal correction and robust variable selection).
Resumo:
The analysis of drugs and metabolites in biological fluids usually requires extraction procedures to achieve sample clean-up and analyte preconcentration. Commonly, extraction procedures are performed using liquid-liquid extraction or solid-phase extraction. Nevertheless, these extraction techniques are considered to be time-consuming and require a large amount of organic solvents. On this basis, microextraction techniques have been developed. Among them, liquid-phase microextraction has been standing out. This review describes the liquid-phase microextraction technique based on hollow fibers as a novel and promising alternative in sample preparation prior to chromatographic or electrophoretic analysis. The basic concepts related to this technique and its applicability in extraction of drugs are discussed.
Resumo:
Basic concepts that play an important role in some organic reactions are revisited in this paper, which reports a pedagogical experience involving undergraduate and graduate students. A systematic procedure has been applied in order to use widespread available computational tools. This paper aims to discuss the use of computers in teaching electrophilic addition reactions to alkenes. Two classical examples have been investigated: addition to non-conjugated alkenes and addition to conjugated dienes. The results were compared with those normally discussed in organic textbooks. Several important concepts, such as conformational analysis and energy control (kinetic and thermodynamic) involved in reaction mechanisms can be taught more efficiently if one connects theoretical and practical tools.
Resumo:
This manuscript aims to show the basic concepts and practical application of Principal Component Analysis (PCA) as a tutorial, using Matlab or Octave computing environment for beginners, undergraduate and graduate students. As a practical example it is shown the exploratory analysis of edible vegetable oils by mid infrared spectroscopy.