8 resultados para Backpropagation algorithm
em Scielo Saúde Pública - SP
Resumo:
The objective of this work is to demonstrate the efficient utilization of the Principal Components Analysis (PCA) as a method to pre-process the original multivariate data, that is rewrite in a new matrix with principal components sorted by it's accumulated variance. The Artificial Neural Network (ANN) with backpropagation algorithm is trained, using this pre-processed data set derived from the PCA method, representing 90.02% of accumulated variance of the original data, as input. The training goal is modeling Dissolved Oxygen using information of other physical and chemical parameters. The water samples used in the experiments are gathered from the Paraíba do Sul River in São Paulo State, Brazil. The smallest Mean Square Errors (MSE) is used to compare the results of the different architectures and choose the best. The utilization of this method allowed the reduction of more than 20% of the input data, which contributed directly for the shorting time and computational effort in the ANN training.
Resumo:
Classical serological screening assays for Chagas' disease are time consuming and subjective. The objective of the present work is to evaluate the enzyme immuno-assay (ELISA) methodology and to propose an algorithm for blood banks to be applied to Chagas' disease. Seven thousand, nine hundred and ninety nine blood donor samples were screened by both reverse passive hemagglutination (RPHA) and indirect immunofluorescence assay (IFA). Samples reactive on RPHA and/or IFA were submitted to supplementary RPHA, IFA and complement fixation (CFA) tests. This strategy allowed us to create a panel of 60 samples to evaluate the ELISA methodology from 3 different manufacturers. The sensitivity of the screening by IFA and the 3 different ELISA's was 100%. The specificity was better on ELISA methodology. For Chagas disease, ELISA seems to be the best test for blood donor screening, because it showed high sensitivity and specificity, it is not subjective and can be automated. Therefore, it was possible to propose an algorithm to screen samples and confirm donor results at the blood bank.
Resumo:
ABSTRACTThe Amazon várzeas are an important component of the Amazon biome, but anthropic and climatic impacts have been leading to forest loss and interruption of essential ecosystem functions and services. The objectives of this study were to evaluate the capability of the Landsat-based Detection of Trends in Disturbance and Recovery (LandTrendr) algorithm to characterize changes in várzeaforest cover in the Lower Amazon, and to analyze the potential of spectral and temporal attributes to classify forest loss as either natural or anthropogenic. We used a time series of 37 Landsat TM and ETM+ images acquired between 1984 and 2009. We used the LandTrendr algorithm to detect forest cover change and the attributes of "start year", "magnitude", and "duration" of the changes, as well as "NDVI at the end of series". Detection was restricted to areas identified as having forest cover at the start and/or end of the time series. We used the Support Vector Machine (SVM) algorithm to classify the extracted attributes, differentiating between anthropogenic and natural forest loss. Detection reliability was consistently high for change events along the Amazon River channel, but variable for changes within the floodplain. Spectral-temporal trajectories faithfully represented the nature of changes in floodplain forest cover, corroborating field observations. We estimated anthropogenic forest losses to be larger (1.071 ha) than natural losses (884 ha), with a global classification accuracy of 94%. We conclude that the LandTrendr algorithm is a reliable tool for studies of forest dynamics throughout the floodplain.
Resumo:
Background:Vascular remodeling, the dynamic dimensional change in face of stress, can assume different directions as well as magnitudes in atherosclerotic disease. Classical measurements rely on reference to segments at a distance, risking inappropriate comparison between dislike vessel portions.Objective:to explore a new method for quantifying vessel remodeling, based on the comparison between a given target segment and its inferred normal dimensions.Methods:Geometric parameters and plaque composition were determined in 67 patients using three-vessel intravascular ultrasound with virtual histology (IVUS-VH). Coronary vessel remodeling at cross-section (n = 27.639) and lesion (n = 618) levels was assessed using classical metrics and a novel analytic algorithm based on the fractional vessel remodeling index (FVRI), which quantifies the total change in arterial wall dimensions related to the estimated normal dimension of the vessel. A prediction model was built to estimate the normal dimension of the vessel for calculation of FVRI.Results:According to the new algorithm, “Ectatic” remodeling pattern was least common, “Complete compensatory” remodeling was present in approximately half of the instances, and “Negative” and “Incomplete compensatory” remodeling types were detected in the remaining. Compared to a traditional diagnostic scheme, FVRI-based classification seemed to better discriminate plaque composition by IVUS-VH.Conclusion:Quantitative assessment of coronary remodeling using target segment dimensions offers a promising approach to evaluate the vessel response to plaque growth/regression.
Resumo:
Soil information is needed for managing the agricultural environment. The aim of this study was to apply artificial neural networks (ANNs) for the prediction of soil classes using orbital remote sensing products, terrain attributes derived from a digital elevation model and local geology information as data sources. This approach to digital soil mapping was evaluated in an area with a high degree of lithologic diversity in the Serra do Mar. The neural network simulator used in this study was JavaNNS and the backpropagation learning algorithm. For soil class prediction, different combinations of the selected discriminant variables were tested: elevation, declivity, aspect, curvature, curvature plan, curvature profile, topographic index, solar radiation, LS topographic factor, local geology information, and clay mineral indices, iron oxides and the normalized difference vegetation index (NDVI) derived from an image of a Landsat-7 Enhanced Thematic Mapper Plus (ETM+) sensor. With the tested sets, best results were obtained when all discriminant variables were associated with geological information (overall accuracy 93.2 - 95.6 %, Kappa index 0.924 - 0.951, for set 13). Excluding the variable profile curvature (set 12), overall accuracy ranged from 93.9 to 95.4 % and the Kappa index from 0.932 to 0.948. The maps based on the neural network classifier were consistent and similar to conventional soil maps drawn for the study area, although with more spatial details. The results show the potential of ANNs for soil class prediction in mountainous areas with lithological diversity.
Resumo:
It is presented a software developed with Delphi programming language to compute the reservoir's annual regulated active storage, based on the sequent-peak algorithm. Mathematical models used for that purpose generally require extended hydrological series. Usually, the analysis of those series is performed with spreadsheets or graphical representations. Based on that, it was developed a software for calculation of reservoir active capacity. An example calculation is shown by 30-years (from 1977 to 2009) monthly mean flow historical data, from Corrente River, located at São Francisco River Basin, Brazil. As an additional tool, an interface was developed to manage water resources, helping to manipulate data and to point out information that it would be of interest to the user. Moreover, with that interface irrigation districts where water consumption is higher can be analyzed as a function of specific seasonal water demands situations. From a practical application, it is possible to conclude that the program provides the calculation originally proposed. It was designed to keep information organized and retrievable at any time, and to show simulation on seasonal water demands throughout the year, contributing with the elements of study concerning reservoir projects. This program, with its functionality, is an important tool for decision making in the water resources management.
Resumo:
The determination of the intersection curve between Bézier Surfaces may be seen as the composition of two separated problems: determining initial points and tracing the intersection curve from these points. The Bézier Surface is represented by a parametric function (polynomial with two variables) that maps a point in the tridimensional space from the bidimensional parametric space. In this article, it is proposed an algorithm to determine the initial points of the intersection curve of Bézier Surfaces, based on the solution of polynomial systems with the Projected Polyhedral Method, followed by a method for tracing the intersection curves (Marching Method with differential equations). In order to allow the use of the Projected Polyhedral Method, the equations of the system must be represented in terms of the Bernstein basis, and towards this goal it is proposed a robust and reliable algorithm to exactly transform a multivariable polynomial in terms of power basis to a polynomial written in terms of Bernstein basis .
Resumo:
In this paper we present an algorithm for the numerical simulation of the cavitation in the hydrodynamic lubrication of journal bearings. Despite the fact that this physical process is usually modelled as a free boundary problem, we adopted the equivalent variational inequality formulation. We propose a two-level iterative algorithm, where the outer iteration is associated to the penalty method, used to transform the variational inequality into a variational equation, and the inner iteration is associated to the conjugate gradient method, used to solve the linear system generated by applying the finite element method to the variational equation. This inner part was implemented using the element by element strategy, which is easily parallelized. We analyse the behavior of two physical parameters and discuss some numerical results. Also, we analyse some results related to the performance of a parallel implementation of the algorithm.