9 resultados para Automotive alloys
em Scielo Saúde Pública - SP
Resumo:
Supply chain (SC) resilience and flexibility are important research topics receiving growing attention. However, the academic literature needs empirical studies on SC resilience capable of investigating the inter-organizational components of flexibility along different tiers. Therefore, this paper analyzes the main lack of flexibilities in three Brazilian automotive SCs that limit their resilience and therefore their capacity to better support and meet the demand changes in the marketplace. A multi-tier case study approach is adopted. Research findings identify lack of flexibilities in different tiers that inhibit the SC resilience as well as manufacturing and SC flexibilities that build SC resilience. The findings also highlight that the same SC may have the flexibility to be resilient for one of its products but not for another product, what sheds new lights on the academic literature. Finally, flexible SCs should be designed to increase SC resilience to cope with mishaps as significant demand changes.
Resumo:
This article focuses on the results of the final stage of research into the climate strategies of firms in the automotive and pulp-and-paper industries in Brazil, a country that is becoming increasingly important also in terms of climate change issues. In the first stage, the Climate Strategy Model (CSM) was developed to assess whether firms were adopting the necessary practices to assure the successful implementation of climate strategies. In the second, the CSM was applied to firms in the above mentioned industries that were chosen because of their important role in the domestic economy. In the final stage, interviews with executives of these firms were conducted to identify root causes of climate strategy implementation deficiencies and obtain new insights from an international perspective.
Resumo:
A spectrophotometric method was proposed for Ni(II) determination in alloys using a dopa-semiquinone (L-1) to form [Ni(II)(L1-)3]1-, ε = 9.3 x 10³ L mol-1 cm-1. The optimal conditions for the determination were: wavelength 590 nm, temperature 25 °C, reaction time 45 min and pH 7.5. The Beer's law was obeyed for nickel from 3.33 x 10-5 to 1.78 x 10-4 mol L-1. The method was applied to complex samples, such as inox, nickel-titanium and cobalt-chromium alloys. A study of the potential interferents revealed that Mn was the major interferent. The limit of detection and quantification were 2.88 x 10-5 mol L-1 and 3.06 x 10-5 mol L-1, respectively.
Resumo:
The corrosion resistance of the new Ti-6Al-4V-1Zr alloy in comparison with ternary Ti-6Al-4V alloy in Ringer-Brown solution and artificial Carter-Brugirard saliva of different pH values was studied. In Ringer-Brown solution, the new alloy presented an improvement of all electrochemical parameters due to the alloying with Zr; also, impedance spectra revealed better protective properties of its passive layer. In Carter-Brugirard artificial saliva, an increase of the passive film thickness was proved. Fluoride ions had a slight negative influence on the corrosion and ion release rates, without to affect the very good stability of the new Ti-6Al-4V-1Zr alloy.
Resumo:
The Mg-vacancy binding free enthalpy of Al-Cr solid solution alloys with Mg addition was calculated by electrical resistivity measurements. The obtained value is lower than that obtained for dilute Al-Mg alloys with almost the same Mg content and may be attributed to the diffusion of Mg.
Resumo:
The influence of the Al content on the phase transformations in Cu-Al-Ag alloys was studied by classical differential thermal analysis (DTA), optical microscopy (OM) and X-ray diffractometry (XRD). The results indicated that the increase in the Al content and the presence of Ag decrease the rate of the b1 phase decomposition reaction and contribute for the raise of this transition temperature, thus decreasing the stability range of the perlitic phase resulted from the b1 decomposition reaction.
Resumo:
Self-fluxed nickel alloys are usually flame fused after thermal spraying. However, due to the practical aspects of high temperatures reached during flame fusing, large structures such as the hydraulic turbines for power generation, can not be efficiently coated. An alternative is to fuse the sprayed coating with a gas tungsten electric arc. In this case, heating is much more intensive and substrate temperature during and after the fusing operation is much lower, thus reducing the possibility that any problem will occur. In this work, coatings of self-fluxed nickel alloy fused by flame and gas tungsten arc were evaluated as protection of hydraulic turbines against cavitational damage. Several tests were performed, including the ASTM ultrasonically vibration-induced cavitation, optical and scanning electronic microscopic metallography, and hardness tests. The results showed that the arc-fused coating presented better cavitation damage resistance, probably due to its finer microstructure. A field application of this new technique is also described. A self-fluxed Ni alloy was flame sprayed in critical regions of Francis-type hydraulic turbine blades and fused by a gas tungsten arc after spraying. The blades will be inspected during the next two years.
Resumo:
The aim of the present work is to study the noise and vibration damping capacity of ferromagnetic Fe-16%Cr base alloys (before and after heat treatment) with different Al and Mo contents. The noise damping was evaluated by the level of sound emission after an impact. The vibration damping was studied using a cantilever device. In addition to these tests, the magnetic structure of the materials was also investigated by Kerr effect. It was verified that the materials can decrease noise level in the frequency range of human earring. The vibration damping is influenced by heat treatment and chemical composition of the alloy. The improvement of vibration damping after heat treatment is ascribed to the decrease of internal stresses in materials and changes in magnetic domain structures.
Resumo:
Shape memory alloys (SMA) are materials that have the ability to return to a former shape when subjected to an appropriate thermomechanical procedure. Pseudoelastic and shape memory effects are some of the behaviors presented by these alloys. The unique properties concerning these alloys have encouraged many investigators to look for applications of SMA in different fields of human knowledge. The purpose of this review article is to present a brief discussion of the thermomechanical behavior of SMA and to describe their most promising applications in the biomedical area. These include cardiovascular and orthopedic uses, and surgical instruments.