8 resultados para Artificial Intelligence Application
em Scielo Saúde Pública - SP
Resumo:
In this paper we discuss interesting developments of expert systems for machine diagnosis and condition-based maintenance. We review some elements of condition-based maintenance and its applications, expert systems for machine diagnosis, and an example of machine diagnosis. In the last section we note some problems to be resolved so that expert systems for machine diagnosis may gain wider acceptance in the future.
Resumo:
The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.
Resumo:
The differential diagnosis of urinary incontinence classes is sometimes difficult to establish. As a rule, only the results of urodynamic testing allow an accurate diagnosis. However, this exam is not always feasible, because it requires special equipment, and also trained personnel to lead and interpret the exam. Some expert systems have been developed to assist health professionals in this field. Therefore, the aims of this paper are to present the definition of Artificial Intelligence; to explain what Expert System and System for Decision Support are and its application in the field of health and to discuss some expert systems for differential diagnosis of urinary incontinence. It is concluded that expert systems may be useful not only for teaching purposes, but also as decision support in daily clinical practice. Despite this, for several reasons, health professionals usually hesitate to use the computer expert system to support their decision making process.
Resumo:
The paper discusses the utilization of new techniques ot select processes for protein recovery, separation and purification. It describesa rational approach that uses fundamental databases of proteins molecules to simplify the complex problem of choosing high resolution separation methods for multi component mixtures. It examines the role of modern computer techniques to help solving these questions.
Resumo:
One of the major interests in soil analysis is the evaluation of its chemical, physical and biological parameters, which are indicators of soil quality (the most important is the organic matter). Besides there is a great interest in the study of humic substances and on the assessment of pollutants, such as pesticides and heavy metals, in soils. Chemometrics is a powerful tool to deal with these problems and can help soil researchers to extract much more information from their data. In spite of this, the presence of these kinds of strategies in the literature has obtained projection only recently. The utilization of chemometric methods in soil analysis is evaluated in this article. The applications will be divided in four parts (with emphasis in the first two): (i) descriptive and exploratory methods based on Principal Component Analysis (PCA); (ii) multivariate calibration methods (MLR, PCR and PLS); (iii) methods such as Evolving Factor Analysis and SIMPLISMA; and (iv) artificial intelligence methods, such as Artificial Neural Networks.
Resumo:
The development of new tools for chemoinformatics, allied to the use of different algorithms and computer programmes for structure elucidation of organic compounds, is growing fast worldwide. Massive efforts in research and development are currently being pursued both by academia and the so-called chemistry software development companies. The demystification of this environment provoked by the availability of software packages and a vast array of publications exert a positive impact on chemistry. In this work, an overview concerning the more classical approaches as well as new strategies on computer-based tools for structure elucidation of organic compounds is presented. Historical background is also taken into account since these techniques began to develop around four decades ago. Attention will be paid to companies which develop, distribute or commercialize software as well as web-based and open access tools which are currently available to chemists.
Resumo:
Although several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements.
Resumo:
Clinical decision support systems are useful tools for assisting physicians to diagnose complex illnesses. Schizophrenia is a complex, heterogeneous and incapacitating mental disorder that should be detected as early as possible to avoid a most serious outcome. These artificial intelligence systems might be useful in the early detection of schizophrenia disorder. The objective of the present study was to describe the development of such a clinical decision support system for the diagnosis of schizophrenia spectrum disorders (SADDESQ). The development of this system is described in four stages: knowledge acquisition, knowledge organization, the development of a computer-assisted model, and the evaluation of the system's performance. The knowledge was extracted from an expert through open interviews. These interviews aimed to explore the expert's diagnostic decision-making process for the diagnosis of schizophrenia. A graph methodology was employed to identify the elements involved in the reasoning process. Knowledge was first organized and modeled by means of algorithms and then transferred to a computational model created by the covering approach. The performance assessment involved the comparison of the diagnoses of 38 clinical vignettes between an expert and the SADDESQ. The results showed a relatively low rate of misclassification (18-34%) and a good performance by SADDESQ in the diagnosis of schizophrenia, with an accuracy of 66-82%. The accuracy was higher when schizophreniform disorder was considered as the presence of schizophrenia disorder. Although these results are preliminary, the SADDESQ has exhibited a satisfactory performance, which needs to be further evaluated within a clinical setting.