31 resultados para Aromatic Rings
em Scielo Saúde Pública - SP
Resumo:
This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using 13C NMR, the number of carbons in side chains and hydroxyl, carbonyl, carboxyl and methoxyl groups related to 100 aromatic rings could be estimated in tar and creosote. In creosote, after reaction with excess formaldehyde in alkaline medium, only 0,28 hydroxymethyl groups was detected per phenolic ring. This low amount of hydroxymethylation explains the lack of reactivity in curing observed when creosote was introduced in a standard adhesive formulation.
Resumo:
Chalcone (1) and its fluorinated derivatives 2-4, as well as their cyclic analogues 5-10, were synthesized through an aldol condensation reaction between the corresponding ketone and aldehyde. These compounds were characterized by IR, EIMS and ¹H and 13C NMR spectral data. Modern NMR techniques allowed us to conclude that the compounds obtained show E configuration. These techniques were also employed to investigate the equilibrium involving the s-cis and s-trans conformations of 1-4, with this equilibrium being dependent on the fluorine substitution on both aromatic rings, A or B. IR studies indicated that the yield of the s-cis conformation in the fluorinated derivatives is 57.4±1.4; 88.1±0.4 and 66.4±0.7%, for 2, 3 and 4, respectively, based on previous ¹H NMR calculations for chalcone. Theoretical calculations, using the MMX method, were employed to justify the variation of chemical shifts for the fluorinated derivatives and cyclic analogues. These chemical shifts are consequence of the anisotropic effect showed by the carbonyl group on these compounds.
Resumo:
In this work we describe the processing of poly(styrene sulphonate) films (PSS) doped with neodymium (Nd). Optical density measurements in the UV-Vis-NIR region show the typical bands observed for neodymium chloride (NdCl3) in solution. In the case of films, the intensity ratio between the peaks at 800 nm (4I9/2 -> 4F5/2 + ²H7/2) and 580 nm (4I9/2 -> 4G5/2 + ²G7/2) is equal to 0.83. Infrared spectra present an enhancement in the absorption region of aromatic rings. Site selective luminescence spectroscopy shows that the incorporation of Nd introduces a hipsochromic shift and a line shape definition in UV luminescence compared to PSS film, decreasing the interaction between aromatic groups. In addition, the film exhibits an intense radiative transition at 1061 nm (4F3/2->4I11/2), comparable to the one present in crystalline materials doped with Nd.
Resumo:
In this work, seven samples of humic acids extracted from gleysoils were investigated. These studies, using NMR CP/MAS 13C techniques, did not show significant correlation between the E4/E6 ratio and the degree of aromaticity. However, dipolar dephasing (DD) measurements of condensed aromatic or substituted carbons showed a negative correlation of 0.94. Also, there was a good correlation between the amount of semiquinone free radicals measured by the EPR technique and condensed aromatic rings measured by NMR CP/MAS 13C with the DD technique. The content of semiquinone free radicals was quantified by EPR spectroscopy and was correlated with the humification (degree of aromaticity) of the humic substances. The results indicated that the E4/E6 ratio identifies the degree of aromatic rings condensation. It was also found that the degree of aromaticity, measured by NMR, as frequently presented in the literature (by conventional CP/MAS), underestimates aromatic rings in condensed structures.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a great environmental concern mainly because of their toxic, mutagenic and carcinogenic potential. This paper reports utilization of the solid-phase extraction (SPE) technique to determine PAHs in environmental aqueous matrices. The recovery from environmental aqueous matrices fortified with PAHs varied from 63.7 to 93.1% for atmospheric liquid precipitation, from 38.3 to 95.1% for superficial river water, and from 71.0 to 95.5% for marine water. No negative matrix effect was observed for the recovery of PAHs from atmospheric liquid precipitation and marine water, but was observed for superficial river water, particularly for PAHs possessing 5 and 6 aromatic rings.
Resumo:
The chlorination of activated aromatic rings is efficiently achieved under mild conditions by reaction of aromatic compounds with trichloroisocyanuric acid in acetonitrile, at room temperature, leading to products in 60-95% isolated yields and good regioselectivity.
Resumo:
This work presents three operationally simple laboratory protocols for monocrystal growth of small-molecule organic compounds, which have been applied with success in the last ten years for the formation of single crystals for X-ray structural studies. In addition, five structure hints were formulated as general guidelines for selecting a small-molecule organic compound as a candidate for monocrystal growth: molecular weight >200 D, melting point >100 ºC, two or more aromatic rings in the structure, at least two sites for intermolecular hydrogen bond formation, and a halogen or other heavy atom in the structure.
Resumo:
Novel modified electrodes bearing dispersed Pd and Pt particles have been prepared from poly (allyl ether of the p-benzenesulfonic acid) films with incorporated nickel particles making use of galvanic displacement reactions. The SEM analysis of the new modified electrodes revealed efficient deposition of Pd but weak up-take of Pt. Electrocatalytic hydrogenation of several classes of organic substrates were carried out using the MEs Ni, Ni/Pd and Ni/Pt. The Ni/Pd ME showed to be the best of them for the hydrogenation of double, triple and carbonyl bonds. The complete hydrogenation of the aromatic rings for the well-adsorbed substrates acetophenone and benzophenone is noteworthy.
Resumo:
We describe the synthesis and evaluation of N-acylhydrazone compounds bearing different electron-donating groups in one of its aromatic rings, obtained using a four-step synthetic route. IC50 values against pathogenic fungi and bacteria were determined by serial microdilution. Compounds showed low activity against Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa. By contrast, a derivative with a meta-oriented electron-donating group showed significant activity (IC50) against Candida albicans (17 µM), C. krusei (34 µM) and C. tropicalis (17 µM). Results suggest this is a promising lead-compound for synthesis of potent antifungal agents.
Resumo:
This paper reports the synthesis of methanones and esters bearing different substitution patterns as spacer groups between aromatic rings. This series of compounds can be considered phenstatin analogs. Two of the newly synthesized compounds, 5a and 5c, strongly inhibited tubulin polymerization and the binding of [³H] colchicine to tubulin, suggesting that, akin to phenstatin and combretastatin A-4, they can bind to tubulin at the colchicine site.
Resumo:
This paper reports the electrochemical degradation of the azo dye Ponceau 2R under galvanostatic electrolysis in the 1 to 200 mA cm-2 range at room temperature using dimensionally-stable anodes of oxygen (DSA-O2), chlorine (DSA-Cl2) and a titanium electrode of platinum coated with platinum oxide (Ti/Pt). The methodology applied was efficient for removing the color of the Ponceau 2R and the highest percentage removal of total organic carbon was obtained at 200 mA cm-2. Despite not having been observed complete mineralization, approximately80% removal of aromatic rings was estimated, resulting in drastic reduction of toxicity of the sample.
Resumo:
We extended our previous exploration of sulfur bridges as bioisosteric replacements for atoms forming the bridge between the aromatic rings of combretastatin A-4. Employing coupling reactions between 5-iodo-1,2,3-trimethoxybenzene and substituted thiols, followed by oxidation to sulfones with m-CPBA, different locations for attaching the sulfur atom to ring A through the synthesis of nine compounds were examined. Antitubulin activity was performed with electrophoretically homogenous bovine brain tubulin, and activity occurred with the 1,2,3-trimethoxy-4-[(4-methoxyphenyl)thio]benzene (12), while the other compounds were inactive. The compounds were also tested for leishmanicidal activity using promastigote forms of Leishmania braziliensis (MHOM/BR175/M2904), and the greatest activity was observed with 1,2,3-trimethoxy-4-(phenylthio)benzene (10) and 1,2,3-trimethoxy-4-[(4-methoxyphenyl) sulfinyl]benzene (15).
Resumo:
Normal in vitro thyroid peroxidase (TPO) iodide oxidation activity was completely inhibited by a hydrolyzed TPO preparation (0.15 mg/ml) or hydrolyzed bovine serum albumin (BSA, 0.2 mg/ml). A pancreatic hydrolysate of casein (trypticase peptone, 0.1 mg/ml) and some amino acids (cysteine, tryptophan and methionine, 50 µM each) also inhibited the TPO iodide oxidation reaction completely, whereas casamino acids (0.1 mg/ml), and tyrosine, phenylalanine and histidine (50 µM each) inhibited the TPO reaction by 54% or less. A pancreatic digest of gelatin (0.1 mg/ml) or any other amino acid (50 µM) tested did not significantly decrease TPO activity. The amino acids that impair iodide oxidation also inhibit the TPO albumin iodination activity. The inhibitory amino acids contain side chains with either sulfur atoms (cysteine and methionine) or aromatic rings (tyrosine, tryptophan, histidine and phenylalanine). Among the amino acids tested, only cysteine affected the TPO guaiacol oxidation reaction, producing a transient inhibition at 25 or 50 µM. The iodide oxidation inhibitory activity of cysteine, methionine and tryptophan was reversed by increasing iodide concentrations from 12 to 18 mM, while no such effect was observed when the cofactor (H2O2) concentration was increased. The inhibitory substances might interfere with the enzyme activity by competing with its normal substrates for their binding sites, binding to the free substrates or reducing their oxidized form.
Resumo:
Fourteen compounds were evaluated for their activity against Trypanosoma cruzi blood stream forms at the concentration of 500 µg/ml. Six compounds were active and re-tested at lower concentrations.
The biological in vitro effect and selectivity of aromatic dicationic compounds on Trypanosoma cruzi
Resumo:
Trypanosoma cruzi is a parasite that causes Chagas disease, which affects millions of individuals in endemic areas of Latin America. One hundred years after the discovery of Chagas disease, it is still considered a neglected illness because the available drugs are unsatisfactory. Aromatic compounds represent an important class of DNA minor groove-binding ligands that exhibit potent antimicrobial activity. This study focused on the in vitro activity of 10 aromatic dicationic compounds against bloodstream trypomastigotes and intracellular forms of T. cruzi. Our data demonstrated that these compounds display trypanocidal effects against both forms of the parasite and that seven out of the 10 compounds presented higher anti-parasitic activity against intracellular parasites compared with the bloodstream forms. Additional assays to determine the potential toxicity to mammalian cells showed that the majority of the dicationic compounds did not considerably decrease cellular viability. Fluorescent microscopy analysis demonstrated that although all compounds were localised to a greater extent within the kinetoplast than the nucleus, no correlation could be found between compound activity and kDNA accumulation. The present results stimulate further investigations of this class of compounds for the rational design of new chemotherapeutic agents for Chagas disease.