18 resultados para Appropriate Selection Processes Are Available For Choosing Hospitality Texts
em Scielo Saúde Pública - SP
Resumo:
The objective of this work was to evaluate the processes of selection in a citrus hybrid population using segregation analysis of RAPD markers. The segregation of 123 RAPD markers between 'Cravo' mandarin (Citrus reticulata Blanco) and 'Pêra' sweet orange (C. sinensis (L.) Osbeck) was analysed in a F1 progeny of 94 hybrids. Genetic composition, diversity, heterozygosity, differences in chromosomal structure and the presence of deleterious recessive genes are discussed based on the segregation ratios obtained. A high percentage of markers had a skeweness of the 1:1 expected segregation ratio in the F1 population. Many markers showed a 3:1 segregation ratio in both varieties and 1:3 in 'Pêra' sweet orange, probably due to directional selection processes. The distribution analysis of the frequencies of the segregant markers in a hybrid population is a simple method which allows a better understanding of the genetics of citrus group.
Resumo:
The control of CD4 gene expression is essential for proper T lymphocyte development. Signals transmitted from the T-cell antigen receptor (TCR) during the thymic selection processes are believed to be linked to the regulation of CD4 gene expression during specific stages of T cell development. Thus, a study of the factors that control CD4 gene expression may lead to further insight into the molecular mechanisms that drive thymic selection. In this review, we discuss the work conducted to date to identify and characterize the cis-acting transcriptional control elements in the CD4 locus and the DNA-binding factors that mediate their function. From these studies, it is becoming clear that the molecular mechanisms controlling CD4 gene expression are very complex and differ at each stage of development. Thus, the control of CD4 expression is subject to many different influences as the thymocyte develops.
Resumo:
After Triatoma infestans death, Trypanosoma cruzi survived several days, maintaining the ability to infect a vertebrate host. Dead bugs from an endemic area collected during an official spraying comapign showed mobile rectal tripanosomes up to 14 days after vector death. Two days after vector death2, 760 tripomastigotes were found alive in its rectal material. However, the number of mobile tripomastigotes decreased significantly from the 5th day after death. Laboratory proofs with third and fifth nymphal stage showed similar results. Living tripanosomes were found in their rectal material at 10 days in third stage and even at 30 days in fifth nymphal stage. The mean number of tripomastigotes had no changes up to 10 days in third nymphal stage and increased significantly from 1 to 10 days in the fifth stage. Conjuctival instillation as well as intraperitoneal innoculation to mice, of metacyclic forms from dead T. infestans produced infection in the vertebrate host. Present results show that human contact with dead vector highly probable in summer and living and infective T. cruzi are available for transmision in the vector.
Current millennium biotechniques for biomedical research on parasites and host-parasite interactions
Resumo:
The development of biotechnology in the last three decades has generated the feeling that the newest scientific achievements will deliver high standard quality of life through abundance of food and means for successfully combating diseases. Where the new biotechnologies give access to genetic information, there is a common belief that physiological and pathological processes result from subtle modifications of gene expression. Trustfully, modern genetics has produced genetic maps, physical maps and complete nucleotide sequences from 141 viruses, 51 organelles, two eubacteria, one archeon and one eukaryote (Saccharomices cerevisiae). In addition, during the Centennial Commemoration of the Oswaldo Cruz Institute the nearly complete human genome map was proudly announced, whereas the latest Brazilian key stone contribution to science was the publication of the Shillela fastidiosa genomic sequence highlythed on a Nature cover issue. There exists a belief among the populace that further scientific accomplishments will rapidly lead to new drugs and methodological approaches to cure genetic diseases and other incurable ailments. Yet, much evidence has been accumulated, showing that a large information gap exists between the knowledge of genome sequence and our knowledge of genome function. Now that many genome maps are available, people wish to know what are we going to do with them. Certainly, all these scientific accomplishments will shed light on many more secrets of life. Nevertheless, parsimony in the weekly announcements of promising scientific achievements is necessary. We also need many more creative experimental biologists to discover new, as yet un-envisaged biotechnological approaches, and the basic resource needed for carrying out mile stone research necessary for leading us to that "promised land"often proclaimed by the mass media.
Resumo:
Abstract Solitary pulmonary nodule corresponds to a common radiographic finding, which is frequently detected incidentally. The investigation of this entity remains complex, since characteristics of benign and malignant processes overlap in the differential diagnosis. Currently, many strategies are available to evaluate solitary pulmonary nodules with the main objective of characterizing benign lesions as best as possible, while avoiding to expose patients to the risks inherent to invasive methods, besides correctly detecting cases of lung cancer so as the potential curative treatment is not delayed. This first part of the study focuses on the epidemiology, the morfological evaluation and the methods to determine the likelihood of cancer in cases of indeterminate solitary pulmonary nodule.
Resumo:
Earlier workers have suggested that disjoint hydrocarbons have nearly-degenerate lowest-lying singlet and triplet states while non-disjoint (or joint) hydrocarbons should be ground-state triplets. PM3 results for an appropriate selection of alternant hydrocarbons are inconsistent with that generalization: disjoint, nonclassical, alternant hydrocarbons show the strongest predilection for triplet ground states.
Resumo:
This contribution discusses the state of the art and the challenges in producing biofuels, as well as the need to develop chemical conversion processes of CO2 in Brazil. Biofuels are sustainable alternatives to fossil fuels for providing energy, whilst minimizing the effects of CO2 emissions into the atmosphere. Ethanol from fermentation of simple sugars and biodiesel produced from oils and fats are the first-generation of biofuels available in the country. However, they are preferentially produced from edible feedstocks (sugar cane and vegetable oils), which limits the expansion of national production. In addition, environmental issues, as well as political and societal pressures, have promoted the development of 2nd and 3rd generation biofuels. These biofuels are based on lignocellulosic biomass from agricultural waste and wood processing, and on algae, respectively. Cellulosic ethanol, from fermentation of cellulose-derived sugars, and hydrocarbons in the range of liquid fuels (gasoline, jet, and diesel fuels) produced through thermochemical conversion processes are considered biofuels of the new generation. Nevertheless, the available 2nd and 3rd generation biofuels, and those under development, have to be subsidized for inclusion in the consumer market. Therefore, one of the greatest challenges in the biofuels area is their competitive large-scale production in relation to fossil fuels. Owing to this, fossil fuels, based on petroleum, coal and natural gas, will be around for many years to come. Thus, it is necessary to utilize the inevitable CO2 released by the combustion processes in a rational and economical way. Chemical transformation processes of CO2 into methanol, hydrocarbons and organic carbonates are attractive and relatively easy to implement in the short-to-medium terms. However, the low reactivity of CO2 and the thermodynamic limitations in terms of conversion and yield of products remain challenges to be overcome in the development of sustainable CO2 conversion processes.
Resumo:
Coal, natural gas and petroleum-based liquid fuels are still the most widely used energy sources in modern society. The current scenario contrasts with the foreseen shortage of petroleum that was spread out in the beginning of the XXI century, when the concept of "energy security" emerged as an urgent agenda to ensure a good balance between energy supply and demand. Much beyond protecting refineries and oil ducts from terrorist attacks, these issues soon developed to a portfolio of measures related to process sustainability, involving at least three fundamental dimensions: (a) the need for technological breakthroughs to improve energy production worldwide; (b) the improvement of energy efficiency in all sectors of modern society; and (c) the increase of the social perception that education is a key-word towards a better use of our energy resources. Together with these technological, economic or social issues, "energy security" is also strongly influenced by environmental issues involving greenhouse gas emissions, loss of biodiversity in environmentally sensitive areas, pollution and poor solid waste management. For these and other reasons, the implementation of more sustainable practices in our currently available industrial facilities and the search for alternative energy sources that could partly replace the fossil fuels became a major priority throughout the world. Regarding fossil fuels, the main technological bottlenecks are related to the exploitation of less accessible petroleum resources such as those in the pre-salt layer, ranging from the proper characterization of these deep-water oil reservoirs, the development of lighter and more efficient equipment for both exploration and exploitation, the optimization of the drilling techniques, the achievement of further improvements in production yields and the establishment of specialized training programs for the technical staff. The production of natural gas from shale is also emerging in several countries but its production in large scale has several problems ranging from the unavoidable environmental impact of shale mining as well as to the bad consequences of its large scale exploitation in the past. The large scale use of coal has similar environmental problems, which are aggravated by difficulties in its proper characterization. Also, the mitigation of harmful gases and particulate matter that are released as a result of combustion is still depending on the development of new gas cleaning technologies including more efficient catalysts to improve its emission profile. On the other hand, biofuels are still struggling to fulfill their role in reducing our high dependence on fossil fuels. Fatty acid alkyl esters (biodiesel) from vegetable oils and ethanol from cane sucrose and corn starch are mature technologies whose market share is partially limited by the availability of their raw materials. For this reason, there has been a great effort to develop "second-generation" technologies to produce methanol, ethanol, butanol, biodiesel, biogas (methane), bio-oils, syngas and synthetic fuels from lower grade renewable feedstocks such as lignocellulosic materials whose consumption would not interfere with the rather sensitive issues of food security. Advanced fermentation processes are envisaged as "third generation" technologies and these are primarily linked to the use of algae feedstocks as well as other organisms that could produce biofuels or simply provide microbial biomass for the processes listed above. Due to the complexity and cost of their production chain, "third generation" technologies usually aim at high value added biofuels such as biojet fuel, biohydrogen and hydrocarbons with a fuel performance similar to diesel or gasoline, situations in which the use of genetically modified organisms is usually required. In general, the main challenges in this field could be summarized as follows: (a) the need for prospecting alternative sources of biomass that are not linked to the food chain; (b) the intensive use of green chemistry principles in our current industrial activities; (c) the development of mature technologies for the production of second and third generation biofuels; (d) the development of safe bioprocesses that are based on environmentally benign microorganisms; (e) the scale-up of potential technologies to a suitable demonstration scale; and (f) the full understanding of the technological and environmental implications of the food vs. fuel debate. On the basis of these, the main objective of this article is to stimulate the discussion and help the decision making regarding "energy security" issues and their challenges for modern society, in such a way to encourage the participation of the Brazilian Chemistry community in the design of a road map for a safer, sustainable and prosper future for our nation.
Resumo:
Brazilian pine or araucaria (Araucaria angustifolia) is a coniferous tree with great economic, social and environmental importance in southern Brazil, being exploited for both wood production and for its edible pine nuts. However, no efficient cloning techniques are available and, therefore, the purpose of this study was to evaluate the effectiveness of vegetative rescue methods for cuttings propagation of the species. Shoots/cuttings were generated in two ways: 26 years old trees underwent coppicing and 20 years old trees had the primary branches on the upper third of crown pruned at 2, 20 and 50 cm from the main trunk. Orthotropic shoots were rooted after application of indole-3-butyric acid (IBA) at 0, 2, 4 and 6 g.L-1. Coppicing produced 47 cuttings per plant with 90% orthotropic shoots, while pruning resulted in 182 cuttings per plant with 44% orthotropic shoots. Rooting success indexes were low with no influence of IBA, although they are slightly superior to the ones available in the literature for the species, ranging from 12 to 30% for the coppice shoots and from 0 to 28% for the branches shoots. We conclude that both vegetative rescue techniques are viable and have potentially important applications. Coppicing is recommended for the propagation aiming the production of wood, while shoots derived from the side branches of the crown are more appropriate for seeds orchards formation.
Resumo:
The soybean rust caused by Phakopsora pachyrhizi is considered the main soybean disease and consequently the appropriate selection and the use of spraying equipment are vital for its control. The aim of this study was to evaluate the performance of aerial application equipment for soybean rust control. It was used: Micronair AU 5000 at 10 L ha-1 (with oil) and at 20 L ha-1 (without oil); Stol ARD atomizer at 10 and 20 L ha-1 (both with oil) and Spectrum (electrostatic) at 10 L ha-1 (without oil). The adjuvant was cotton oil (1.0 L ha-1) with emulsifier (BR 455) at 0.025 L ha-1. The field trial was set up at the 3rd fungicide application, when f four replications of each treatment. There were no statistical differences among treatments related to fungicide deposits by at a Confidence Interval of 95%. It was observed that the best results were obtained with Micronair (10 L ha-1 with oil), Stol (20 L ha-1 with oil) and electrostatic system at 10 L ha-1 with the lowest relative humidity (64%).
Resumo:
Numerical simulation of machining processes can be traced back to the early seventies when finite element models for continuous chip formation were proposed. The advent of fast computers and development of new techniques to model large plastic deformations have favoured machining simulation. Relevant aspects of finite element simulation of machining processes are discussed in this paper, such as solution methods, material models, thermo-mechanical coupling, friction models, chip separation and breakage strategies and meshing/re-meshing strategies.
Resumo:
The main objective of this work is to analyze the importance of the gas-solid interface transfer of the kinetic energy of the turbulent motion on the accuracy of prediction of the fluid dynamic of Circulating Fluidized Bed (CFB) reactors. CFB reactors are used in a variety of industrial applications related to combustion, incineration and catalytic cracking. In this work a two-dimensional fluid dynamic model for gas-particle flow has been used to compute the porosity, the pressure, and the velocity fields of both phases in 2-D axisymmetrical cylindrical co-ordinates. The fluid dynamic model is based on the two fluid model approach in which both phases are considered to be continuous and fully interpenetrating. CFB processes are essentially turbulent. The model of effective stress on each phase is that of a Newtonian fluid, where the effective gas viscosity was calculated from the standard k-epsilon turbulence model and the transport coefficients of the particulate phase were calculated from the kinetic theory of granular flow (KTGF). This work shows that the turbulence transfer between the phases is very important for a better representation of the fluid dynamics of CFB reactors, especially for systems with internal recirculation and high gradients of particle concentration. Two systems with different characteristics were analyzed. The results were compared with experimental data available in the literature. The results were obtained by using a computer code developed by the authors. The finite volume method with collocated grid, the hybrid interpolation scheme, the false time step strategy and SIMPLEC (Semi-Implicit Method for Pressure Linked Equations - Consistent) algorithm were used to obtain the numerical solution.
Resumo:
The augmented reality (AR) technology has applications in many fields as diverse as aeronautics, tourism, medicine, and education. In this review are summarized the current status of AR and it is proposed a new application of it in weed science. The basic algorithmic elements for AR implementation are already available to develop applications in the area of weed economic thresholds. These include algorithms for image recognition to identify and quantify weeds by species and software for herbicide selection based on weed density. Likewise, all hardware necessary for AR implementation in weed science are available at an affordable price for the user. Thus, the authors propose weed science can take a leading role integrating AR systems into weed economic thresholds software, thus, providing better opportunities for science and computer-based weed control decisions.
Resumo:
The participation of the kallikrein-kinin system, comprising the serine proteases kallikreins, the protein substrates kininogens and the effective peptides kinins, in some pathological processes like hypertension and cardiovascular diseases is still a matter of controversy. The use of different experimental set-ups in concert with the development of potent and specific inhibitors and antagonists for the system has highlighted its importance but the results still lack conclusivity. Over the last few years, transgenic and gene-targeting technologies associated with molecular biology tools have provided specific information about the elusive role of the kallikrein-kinin system in the control of blood pressure and electrolyte homeostasis. cDNA and genomic sequences for kinin receptors B2 and B1 from different species were isolated and shown to encode G-protein-coupled receptors and the structure and pharmacology of the receptors were characterized. Transgenic animals expressing an overactive kallikrein-kinin system were established to study the cardiovascular effects of these alterations and the results of these investigations further corroborate the importance of this system in the maintenance of normal blood pressure. Knockout animals for B2 and B1 receptors are available and their analysis also points to the role of these receptors in cardiovascular regulation and inflammatory processes. In this paper the most recent and relevant genetic animal models developed for the study of the kallikrein-kinin system are reviewed, and the advances they brought to the understanding of the biological role of this system are discussed.
Resumo:
We have developed a software called pp-Blast that uses the publicly available Blast package and PVM (parallel virtual machine) to partition a multi-sequence query across a set of nodes with replicated or shared databases. Benchmark tests show that pp-Blast running in a cluster of 14 PCs outperformed conventional Blast running in large servers. In addition, using pp-Blast and the cluster we were able to map all human cDNAs onto the draft of the human genome in less than 6 days. We propose here that the cost/benefit ratio of pp-Blast makes it appropriate for large-scale sequence analysis. The source code and configuration files for pp-Blast are available at http://www.ludwig.org.br/biocomp/tools/pp-blast.