16 resultados para Ancestor worship.

em Scielo Saúde Pública - SP


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There is considerable confusion in the literature regarding the systematic position and distribution of two pseudothelphusid crabs originally described as Potamocarcinus reflexifrons Ortmann, 1897 and Potamocarcinus reflexifrons fittkaui Bott, 1967, and now included in the genus Fredius Pretzman, 1965, as F. reflexifrons and F. fittkaui. Study of numerous specimens from recent collections, together with a critical analysis of the data published in the literature, shows that both taxa could be easily separated by gonopodal characters. The two species occupy discrete areas of distribution along the main axis of the Amazon River and in the upper Rio Negro Basin, respectively, with an overlap in the Atlantic Guianas. It is postulated that they originated from a common ancestor, through a process of vicariance, in the two areas observed at present. Permeability of barriers allowed their further occupancy of the Atlantic Guianas after the marine regressions in this area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1) It may seem rather strange that, in spite of the efforts of a considerable number of scientists, the problem of the origin of indian corn or maize still has remained an open question. There are no fossil remains or archaeological relics except those which are quite identical with types still existing. (Fig. 1). The main difficulty in finding the wild ancestor- which may still exist - results from the fact that it has been somewhat difficult to decide what it should be like and also where to look for it. 2) There is no need to discuss the literature since an excellent review has recently been published by MANGELSDORF and REEVES (1939). It may be sufficient to state that there are basically two hypotheses, that of ST. HILAIRE (1829) who considered Brazilian pod corn as the nearest relative of wild corn still existing, and that of ASCHERSON (1875) who considered Euchlaena from Central America as the wild ancestor of corn. Later hypotheses represent or variants of these two hypotheses or of other concepts, howewer generally with neither disproving their predecessors nor showing why the new hypotheses were better than the older ones. Since nearly all possible combinations of ideas have thus been put forward, it har- dly seems possible to find something theoretically new, while it is essential first to produce new facts. 3) The studies about the origin of maize received a new impulse from MANGELSDORF and REEVES'S experimental work on both Zea-Tripsacum and Zea-Euchlaena hybrids. Independently I started experiments in 1937 with the hope that new results might be obtained when using South American material. Having lost priority in some respects I decided to withold publication untill now, when I can put forward more concise ideas about the origin of maize, based on a new experimental reconstruction of the "wild type". 4) The two main aspects of MANGELSDORF and REEVES hypothesis are discussed. We agree with the authors that ST. HILAIRE's theory is probably correct in so far as the tunicata gene is a wild type relic gene, but cannot accept the reconstruction of wild corn as a homozygous pod corn with a hermaphroditic tassel. As shown experimentally (Fig. 2-3) these tassels have their central spike transformed into a terminal, many rowed ear with a flexible rachis, while possessing at the same time the lateral ear. Thus no explanation is given of the origin of the corn ear, which is the main feature of cultivated corn (BRIEGER, 1943). The second part of the hypothesis referring to the origin of Euchlaena from corn, inverting thus ASCHERSON's theory, cannot be accepted for several reasons, stated in some detail. The data at hand justify only the conclusion that both genera, Euchlaena and Zea, are related, and there is as little proof for considering the former as ancestor of the latter as there is for the new inverse theory. 5) The analysis of indigenous corn, which will be published in detail by BRIEGER and CUTLER, showed several very primitive characters, but no type was found which was in all characters sufficiently primitive. A genetical analysis of Paulista Pod Corn showed that it contains the same gene as other tunicates, in the IV chromosome, the segregation being complicated by a new gametophyte factor Ga3. The full results of this analysis shall be published elsewhere. (BRIEGER). Selection experiments with Paulista Pod Corn showed that no approximation to a wild ancestor may be obtained when limiting the studies to pure corn. Thus it seemed necessary to substitute "domesticated" by "wild type" modifiers, and the only means for achieving this substitution are hybridizations with Euchlaena. These hybrids have now been analysed init fourth generation, including backcrosses, and, again, the full data will be published elsewhere, by BRIEGER and ADDISON. In one present publication three forms obtained will be described only, which represent an approximation to wild type corn. 6) Before entering howewer into detail, some arguments against ST. HILAIRE's theory must be mentioned. The premendelian argument, referring to the instability of this character, is explained by the fact that all fertile pod corn plants are heterozygous for the dominant Tu factor. But the sterility of the homozygous TuTu, which phenotypically cannot be identified, is still unexplained. The most important argument against the acceptance of the Tunicata faetor as wild type relic gene was removed recently by CUTLER (not yet published) who showed that this type has been preserved for centuries by the Bolivian indians as a mystical "medicine". 7) The main botanical requirements for transforming the corn ear into a wild type structure are stated, and alternative solutions given. One series of these characters are found in Tripsacum and Euchlaena : 2 rows on opposite sides of the rachis, protection of the grains by scales, fragility of the rachis. There remains the other alternative : 4 rows, possibly forming double rows of female and male spikelets, protection of kernels by their glumes, separation of grains at their base from the cob which is thin and flexible. 8) Three successive stages in the reconstruction of wild corn, obtained experimentally, are discussed and illustrated, all characterized by the presence of the Tu gene. a) The structure of the Fl hybrids has already been described in 1943. The main features of the Tunicata hybrids (Fig. -8), when compared with non-tunicate hybrids (Fig. 5-6), consist in the absence of scaly protections, the fragility of the rachis and finally the differentiation of the double rows into one male and one female spikelet. As has been pointed out, these characters represent new phenotypic effects of the tunicate factor which do not appear in the presence of pure maize modifiers. b) The next step was observed among the first backcross to teosinte (Fig. 9). As shown in the photography, Fig. 9D, the features are essencially those of the Fl plants, except that the rachis is more teosinte like, with longer internodes, irregular four-row-arrangement and a complete fragility on the nodes. c) In the next generation a completely new type appeared (Fig. 10) which resembles neither corn nor teosinte, mainly in consequence of one character: the rachis is thin and flexible and not fragile, while the grains have an abscission layer at the base, The medium sized, pointed, brownish and hard granis are protected by their well developed corneous glumes. This last form may not yet be the nearest approach to a wild grass, and I shall try in further experiments to introduce other changes such as an increase of fertile flowers per spikelet, the reduction of difference between terminal and lateral inflorescences, etc.. But the nature of the atavistic reversion is alveadwy such that it alters considerably our expectation when looking for a still existing wild ancestor of corn. 9) The next step in our deductions must now consist in an reversion of our question. We must now explain how we may obtain domesticated corn, starting from a hypothetical wild plant, similar to type c. Of the several changes which must have been necessary to attract the attention of the Indians, the following two seem to me the most important: the disappearance of all abscission layers and the reduction of the glumes. This may have been brought about by an accumulation of mutations. But it seems much more probable to assume that some crossing with a tripsacoid grass or even with Tripsacum australe may have been responsible. In such a cross, the two types of abscission layer would be counterbalanced as shown by the Flhybrids of corn, Tripsacum and Euchlaena. Furthermore in later generations a.tu-allele of Tripsacum may become homozygous and substitute the wild tunicate factor of corn. The hypothesis of a hybrid origin of cultivated corn is not completely new, but has been discussed already by HARSHBERGER and COLLINS. Our hypothesis differs from that of MANGELSDORF and REEVES who assume that crosses with Tripsacum are responsible only for some features of Central and North American corn. 10) The following arguments give indirects evidence in support of our hypothesis: a) Several characters have been observed in indigenous corn from the central region of South America, which may be interpreted as "tripsacoid". b) Equally "zeoid" characters seem to be present in Tripsacum australe of central South-America. c) A system of unbalanced factors, combined by the in-tergeneric cross, may be responsible for the sterility of the wild type tunicata factor when homozygous, a result of the action of modifiers, brought in from Tripsacum together with the tuallele. d) The hybrid theory may explain satisfactorily the presence of so many lethals and semilethals, responsible for the phenomenon of inbreeding in cultivated corn. It must be emphasized that corn does not possess any efficient mechanism to prevent crossing and which could explain the accumulation of these mutants during the evolutionary process. Teosinte which'has about the same mechanism of sexual reproduction has not accumulated such genes, nor self-sterile plants in spite of their pronounced preference for crossing. 11) The second most important step in domestication must have consisted in transforming a four rowed ear into an ear with many rows. The fusion theory, recently revived byLANGHAM is rejected. What happened evidently, just as in succulent pXants (Cactus) or in cones os Gymnosperms, is that there has been a change in phyllotaxy and a symmetry of longitudinal rows superimposed on the original spiral arrangement. 12) The geographical distribution of indigenous corn in South America has been discussed. So far, we may distinguish three zones. The most primitive corn appears in the central lowlands of what I call the Central Triangle of South America: east of the Andies, south of the Amazone-Basin, Northwest of a line formed by the rivers São Prancisco-Paraná and including the Paraguay-Basin. The uniformity of the types found in this extremely large zone is astonishing (BRIEGER and CUTLER). To the west, there is the well known Andian region, characterized by a large number of extremely diverse types from small pop corn to large Cuszco, from soft starch to modified sweet corn, from large cylindrical ears to small round ears, etc.. The third region extends along the atlantic coast in the east, from the Caribean Sea to the Argentine, and is characterized by Cateto, an orange hard flint corn. The Andean types must have been obtained very early, and undoubtedly are the result of the intense Inca agriculture. The Cateto type may be obtained easily by crosses, for instance, of "São Paulo Pointed Pop" to some orange soft corn of the central region. The relation of these three South American zones to Central and North America are not discussed, and it seems essential first to study the intermediate region of Ecuador, Colombia and Venezuela. The geograprical distribution of chromosome knobs is rapidly discussed; but it seems that no conclusions can be drawn before a large number of Tripsacum species has been analysed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The study of pod corn seems still of much importance from different points of view. The phylogenetical importance of the tunicate factor as a wild type relic gene has been recently discussed in much detail by MANGELSDORF and REEVES (1939), and by BRIEGER (1943, 1944a e b). Selection experiments have shown that the pleiotropic effect of the Tu factor can be modified very extensively (BRIEGER 1944a) and some of the forms thus obtained permitt comparison of male and female inflorescences in corn and related grasses. A detailed discussion of the botanical aspect shall be given shortly. The genetic apect, finally, is the subject of the present publication. Pod corn has been obtained twice: São Paulo Pod Corn and Bolivia Pod Corn. The former came from one half ear left in our laboratory by a student and belongs to the type of corn cultivated in the State of São Paulo, while the other belongs to the Andean group, and has been received both through Dr. CARDENAS, President of the University at Cochabamba, Bolivia, and through Dr. H. C. CUTLER, Harvard University, who collected material in the Andes. The results of the studies may be summarized as follows: 1) In both cases, pod corn is characterized by the presence of a dominant Tu factor, localized in the fourth chromosome and linked with sul. The crossover value differs somewhat from the mean value of 29% given by EMERSON, BEADLE and FRAZER (1935) and was 25% in 1217 plants for São Paulo Pod Corn and 36,5% in 345 plants for Bolivia Pod Corn. However not much importance should be attributed to the quantitative differences. 2) Segregation was completely normal in Bolivia Pod Corn while São Paulo Pod Corn proved to be heterozygous for a new com uma eliminação forte, funcionam apenas 8% em vez de 50%. Existem cerca de 30% de "jcrossing-over entre o gen doce (Su/su) e o fator gametofítico; è cerca de 5% entre o gen Tu e o fator gametofítico. A ordem dos gens no cromosômio IV é: Ga4 - Tu - Sul. 3) Using BRIEGER'S formulas (1930, 1937a, 1937b) the following determinations were made. a) the elimination of ga4 pollen tubes may be strong or weak. In the former case only about 8% and in the latter 37% of ga4 pollen tubes function, instead of the 50% expected in normal heterozygotes. b) There is about 30,4% crossing-over between sul and ga4 and 5,3% between Tu and ga3, the order of the factors beeing Su 1 - Tu - Ga4. 4) The new gametophyte factor differs from the two others factors in the same chromosome, causing competition between pollen tubes. The factor Gal, ocupies another locus, considerably to the left of Sul (EMERSON, BEADLE AND FRAZSER, 1935). The gen spl ocupies another locus and causes a difference of the size of the pollen grains, besides an elimination of pollen tubes, while no such differences were observed in the case of the new factor Ga4. 5) It may be mentioned, without entering into a detailed discussion, that it seems remarquable that three of the few gametophyte factors, so far studied in detail are localized in chromosome four. Actuality there are a few more known (BRIEGER, TIDBURY AND TSENG 1938), but only one other has been localized so far, Ga2, in chromosome five between btl and prl. (BRIEGER, 1935). 6) The fourth chromosome of corn seems to contain other pecularities still. MANGELSDORF AND REEVES (1939) concluded that it carries two translocations from Tripsacum chromosomes, and BRIEGER (1944b) suggested that the tu allel may have been introduced from a tripsacoid ancestor in substitution of the wild type gene Tu at the beginning of domestication. Serious disturbances in the segregation of fourth chromosome factors have been observed (BRIEGER, unpublished) in the hybrids of Brazilian corn and Mexican teosinte, caused by gametophytic and possibly zygotic elimination. Future studies must show wether there is any relation between the frequency of factors, causing gametophyte elimination and the presence of regions of chromosomes, tranfered either from Tripsacum or a related species, by translocation or crossing-over.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ecology of Eudendrium spp. from the Brazilian coast is poorly known, although it already proved to be useful and important as a tool to solve some taxonomical problems of the genus. The seasonality and reproduction patterns of a population of Eudendrium caraiuru Marques & Oliveira, 2003 were studied. Data were sampled from test panels immersed in the water off Cabelo Gordo de Dentro beach, in São Sebastião Channel, Southeastern Brazil, from July 1999 to July 2000, every three months. Eudendrium caraiuru was active throughout the study period. Reproductive peaks of the species were regulated by cold and low-salinity water, although part of the population always bore mature gonophores. In addition to morphological differences, ecological differences between E. caraiuru and its similar species, E. glomeratum Picard, 1951, especially from well known populations of the Mediterranean Sea, corroborated that these species are diverse lineages of a unique ancestor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new nematode, the type of a new genus and a new species Laurostrongylus hoineffae, parasitic in the cricetid rodent Gymnuromys roberti in Madagascar, is described. The species belongs to the Graphiidinae subfamily of Trichostrongylidae but some features point to its affinity to certain Libyostrongylinae, especially to two monospecific genera endemic in Madagascar Pararhabdonema and Cnizostrongylus. This ensemble of relict species seems thus to support the concept of a common ancestor for the Libyostrongylinae and Graphidiinae. The two subfamilies were supposed to originate in the Ethipian region. The presence of the three generain Madagascar could either indicate their Madagascan origin or, more likely, a continental origin with an insular niche allowing the preservation of the species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Most opinion favors the origin of the malaria parasites from a coccidial ancestor. It is assumed that whatever the process through which the coccidia differentiated into a Plasmodium this phenomenon very probably occured millions of year ago, and during that differentiation process the original coccidia vanished. Therefore it has never repeated. At the light of some experiments the existence, at the present time, of a coccidial cycle of development in the malaria parasites, is proposed. The conection routes and mechanisms through which the malaria parasite changes to a coccidial life, and the routes in reverse are exposed. Transmission of the malaria-coccidial forms is suggested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The epidemiologic typing of bacterial pathogens can be applied to answer a number of different questions: in case of outbreak, what is the extent and mode of transmission of epidemic clone(s )? In case of long-term surveillance, what is the prevalence over time and the geographic spread of epidemic and endemic clones in the population? A number of molecular typing methods can be used to classify bacteria based on genomic diversity into groups of closely-related isolates (presumed to arise from a common ancestor in the same chain of transmission) and divergent, epidemiologically-unrelated isolates (arising from independent sources of infection). Ribotyping, IS-RFLP fingerprinting, macrorestriction analysis of chromosomal DNA and PCR-fingerprinting using arbitrary sequence or repeat element primers are useful methods for outbreak investigations and regional surveillance. Library typing systems based on multilocus sequence-based analysis and strain-specific probe hybridization schemes are in development for the international surveillance of major pathogens like Mycobacterium tuberculosis. Accurate epidemiological interpretation of data obtained with molecular typing systems still requires additional research on the evolution rate of polymorphic loci in bacterial pathogens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue invasion and pathology by Trypanosoma cruzi result from an interaction between parasite virulence and host immunity. Successive in vivo generations of the parasite select populations with increasing ability to invade the host. Conversely, prolonged in vitro selection of the parasite produces attenuated sublines with low infectivity for mammals. One such subline (TCC clone) has been extensively used in our laboratory as experimental vaccine and tested in comparative experiments with its virulent ancestor (TUL). The experiments here reviewed aimed at the use of immunodeficient mice for testing the infectivity of TCC parasites. It has not been possible to obtain virulent, revertant sublines by prolonged passaged in such mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nematode parasite Ascaris lumbricoides infects the digestive tracts of over 1.4 billion people worldwide, and its sister species, Ascaris suum, has infected a countless number of domesticated and feral pigs. It is generally thought that the putative ancestor to these worms infected either humans or pigs, but with the advent of domestication, they had ample opportunity to jump to a new host and subsequently specialize and evolve into a new species. While nuclear DNA markers decisively separate the two populations, mitochondrial sequences reveal that three major haplotypes are found in A. suum and in A. lumbricoides, indicating either occasional hybridization, causing introgression of gene trees, or retention of polymorphism dating back to the original ancestral species. This article provides an illustration of the combined contribution of parasitology, archaeoparasitology, genetics and paleogenetics to the history of ascariasis. We specifically investigate the molecular history of ascariasis in humans by sequencing DNA from the eggs of Ascaris found among ancient archeological remains. The findings of this paleogenetic survey will explain whether the three mitochondrial haplotypes result from recent hybridization and introgression, due to intensive human-pig interaction, or whether their co-occurrence predates pig husbandry, perhaps dating back to the common ancestor. We hope to show how human-pig interaction has shaped the recent evolutionary history of this disease, perhaps revealing the identity of the ancestral host.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The fossil record and systematics of phlebotomid sand flies, vectors of leishmaniasis and arbovirus in several regions of the world, strongly support that living genera existed long before the Oligocene (38 million years, myr). A common Phlebotominae ancestor was present in the Triassic period before the separations of continents (248 myr).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Egyptian Pharaoh Akhenaten initiated worship of a single god and established a new capital city (Tell Amarna) that was built and occupied only once from 1350-1330 BCE. This single short occupation offers a unique opportunity to study a short time period. The royal tombs have long been known and studied, but the location of graves for the common inhabitants has been an archaeological puzzle for more than 50 years. Recently four cemeteries have been located and the analysis of commingled bones from the South Tombs cemetery is presented here. The remains yield the following demographic profile: 53 adults with 19 females and 18 males; 14 juveniles between the ages of 5 and 17; and 3 infants. Arthritis and degenerative joint disease of the spine and joints indicates that DJD was not excessive. Only 2 to 8% of the adult population exhibits arthritis. There are 3 healed fractures of the arm (2 to 8% of the adult sample). There is 1 healed compressed fracture of the skull suggesting violence. The adult infection rate is between 2 and 8% with 3 healed and 1 active case of periostitis and no severe infections. Anemia is implicated by 23% of adult frontals exhibiting cribra orbitalia. Life for the common residents of Amarna appears to not have been as good as initially postulated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The culture and commercialization of ornamental plants have considerably increased in the last years. To supply the commercial demand, several Hemerocallis and Impatiens varieties have been bred for appreciated qualities such as flowers with a diversity of shapes and colors. With the aim of characterizing the tobamovirus isolated from Hemerocallis sp. (tobamo-H) and Impatiens hawkeri (tobamo-I) from the USA and São Paulo, respectively, as well as to establish phylogenetic relationships between them and other Tobamovirus species, the viruses were submitted to RNA extraction, RT-PCR amplification, coat-protein gene sequencing and phylogenetic analyses. Comparison of tobamovirus homologous sequences yielded values superior to 98.5% of identity with Tomato mosaic virus (ToMV) isolates at the nucleotide level. In relation to tobamo-H, 100% of identity with ToMV from tomatoes from Australia and Peru was found. Based on maximum likelihood (ML) analysis it was suggested that tobamo-H and tobamo-I share a common ancestor with ToMV, Tobacco mosaic virus, Odontoglossum ringspot virus and Pepper mild mottle virus. The tree topology reconstructed under ML methodology shows a monophyletic group, supported by 100% of bootstrap, consisting of various ToMV isolates from different hosts, including some ornamentals, from different geographical locations. The results indicate that Hemerocallis sp. and I. hawkeri are infected by ToMV. This is the first report of the occurrence of this virus in ornamental species in Brazil.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The presence of iron uptake (irp-2, fyuA, sitA, fepC, iucA), adhesion (iha, lpfA O157/O141, lpfA O157/O154, efa, toxB) and invasion (inv, ial-related DNA sequences and assignment to the four main Escherichia coli phylogenetic groups (A, B1, B2 e D) were determined in 30 commensal E. coli strains isolated from healthy chickens and in 49 APEC strains isolated from chickens presenting clinical signs of septicemia (n=24) swollen head syndrome (n=14) and omphalitis (n=11) by PCR. None of the strains presented DNA sequences related to the inv, ial, efa, and toxB genes. DNA sequences related to lpfA O157/O154, iucA, fepC, and irp-2 genes were significantly found among pathogenic strains, where iucA gene was associated with septicemia and swollen head syndrome and fepC and irp-2 genes were associated with swollen head syndrome strains. Phylogenetic typing showed that commensal and omphalitis strains belonged mainly to phylogenetic Group A and swollen head syndrome to phylogenetic Group D. Septicemic strains were assigned in phylogenetic Groups A and D. These data could suggest that clonal lineage of septicemic APEC strains have a multiple ancestor origin; one from a pathogenic bacteria ancestor and other from a non-pathogenic ancestor that evolved by the acquisition of virulence related sequences through horizontal gene transfer. Swollen head syndrome may constitute a pathogenic clonal group. By the other side, omphalitis strains probably constitute a non-pathogenic clonal group, and could cause omphalitis as an opportunistic infection. The sharing of virulence related sequences by human pathogenic E. coli and APEC strains could indicate that APEC strains could be a source of virulence genes to human strains and could represent a zoonotic risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article proposes a comprehensive view of the origin of the mammalian brain. We discuss i) from which region in the brain of a reptilian-like ancestor did the isocortex originate, and ii) the origin of the multilayered structure of the isocortex from a simple-layered structure like that observed in the cortex of present-day reptiles. Regarding question i there have been two alternative hypotheses, one suggesting that most or all the isocortex originated from the dorsal pallium, and the other suggesting that part of the isocortex originated from a ventral pallial component. The latter implies that a massive tangential migration of cells from the ventral pallium to the dorsal pallium takes place in isocortical development, something that has not been shown. Question ii refers to the origin of the six-layered isocortex from a primitive three-layered cortex. It is argued that the superficial isocortical layers can be considered to be an evolutionary acquisition of the mammalian brain, since no equivalent structures can be found in the reptilian brain. Furthermore, a characteristic of the isocortex is that it develops according to an inside-out neurogenetic gradient, in which late-produced cells migrate past layers of early-produced cells. It is proposed that the inside-out neurogenetic gradient was partly achieved by the activation of a signaling pathway associated with the Cdk5 kinase and its activator p35, while an extracellular protein called reelin (secreted in the marginal zone during development) may have prevented migrating cells from penetrating into the developing marginal zone (future layer I).