266 resultados para Amplified Dna
em Scielo Saúde Pública - SP
Resumo:
Proso millet (Panicum miliaceum L.) is a serious weed in North America. A high number of wild proso millet biotypes are known but the genetic basis of its phenotypic variation is poorly understood. In the present study, a non-radioactive silver staining method for PCR-Amplified Fragment Length Polymorphism (AFLP) was evaluated for studying genetic polymorphism in American proso millet biotypes. Twelve biotypes and eight primer combinations with two/three and three/three selective nucleotides were used. Pair of primers with two/three selective nucleotides produced the highest number of amplified DNA fragments, while pair of primers with three/three selective nucleotides were more effective for revealing more polymorphic DNA fragments. The two better primer combinations were EcoR-AAC/Mse-CTT and EcoR-ACT/Mse-CAA with seven and eleven polymorphic DNA fragments, respectively. In a total of 450 amplified fragments, at least 339 appeared well separated in a silver stained acrylamide gel and 39 polymorphic DNA bands were scored. The level of polymorphic DNA (11.5%) using only eight pairs of primers were effective for grouping proso millet biotypes in two clusters but insufficient for separating hybrid biotypes from wild and crop. Nevertheless, the present result indicates that silver stained AFLP markers could be a cheap and important tool for studying genetic relationships in proso millet.
Resumo:
5-Bromo-2’-deoxyuridine (BrdUrd) has long been known to interfere with cell differentiation. We found that treatment ofBradysia hygida larvae with BrdUrd during DNA puff anlage formation in the polytene chromosomes of the salivary gland S1 region noticeably affects anlage morphology. However, it does not affect subsequent metamorphosis to the adult stage. The chromatin of the chromosomal sites that would normally form DNA puffs remains very compact and DNA puff expansion does not occur with administration of 4 to 8 mM BrdUrd. Injection of BrdUrd at different ages provoked a gradient of compaction of the DNA puff chromatin, leading to the formation of very small to almost normal puffs. By immunodetection, we show that the analogue is preferentially incorporated into the DNA puff anlages. When BrdUrd is injected in a mixture with thymidine, it is not incorporated into the DNA, and normal DNA puffs form. Therefore, incorporation of this analogue into the amplified DNA seems to be the cause of this extreme compaction. Autoradiographic experiments and silver grains counting showed that this treatment decreases the efficiency of RNA synthesis at DNA puff anlages.
Resumo:
A 36 year old male was admitted in December 1997 to hospital with afternoon fever, malaise and hepatosplenomegaly. He also had a dry cough, dyspnoea and anaemia. Pneumonia caused by Pneumocystis carinii and human immunodeficiency virus (HIV) infection were documented. The HIV infection was confirmed in 1997 with 290,000 virus copies. The patient had been in the Mexican State of Chiapas which is known to be endemic for visceral leishmaniosis (VL) and localized cutaneous leishmaniosis (LCL). The visceral symptoms were diagnosed as VL and the causal agent was identified as Leishmania (L.) mexicana. Identification of Leishmania was carried out by the analysis of amplified DNA with specific primers belonging to the Leishmania subgenus and by dot blot positive hybridisation of these polymerase chain reaction derived products with kDNA from the L. (L.) mexicana MC strain used as probe. This is the first case in Mexico of VL caused by a species of Leishmania that typically produces a cutaneous disease form.
Resumo:
Outbreaks of gastroenteritis have occurred among consumers of raw or undercooked shellfish harvested from faecally polluted waters. A multiplex reverse transcription-polymerase chain reaction (RT-PCR) was applied for the simultaneous detection of hepatitis A virus (HAV), poliovirus (PV) and simian rotavirus (RV-SA11) and compared with specific primers for each genome sequence. Three amplified DNA products representing HAV (192 bp), PV (394 bp) and RV (278 bp) were identified when positive controls were used. However, when tested on experimentally contaminated raw oysters, this method was not able to detect the three viruses simultaneously. This is probably due to the low concentration of viral RNAs present in oyster extract which were partially lost during the extracts preparation.
Resumo:
The study of the ecology of soil microbial communities at relevant spatial scales is primordial in the wide Amazon region due to the current land use changes. In this study, the diversity of the Archaea domain (community structure) and ammonia-oxidizing Archaea (richness and community composition) were investigated using molecular biology-based techniques in different land-use systems in western Amazonia, Brazil. Soil samples were collected in two periods with high precipitation (March 2008 and January 2009) from Inceptisols under primary tropical rainforest, secondary forest (5-20 year old), agricultural systems of indigenous people and cattle pasture. Denaturing gradient gel electrophoresis of polymerase chain reaction-amplified DNA (PCR-DGGE) using the 16S rRNA gene as a biomarker showed that archaeal community structures in crops and pasture soils are different from those in primary forest soil, which is more similar to the community structure in secondary forest soil. Sequence analysis of excised DGGE bands indicated the presence of crenarchaeal and euryarchaeal organisms. Based on clone library analysis of the gene coding the subunit of the enzyme ammonia monooxygenase (amoA) of Archaea (306 sequences), the Shannon-Wiener function and Simpson's index showed a greater ammonia-oxidizing archaeal diversity in primary forest soils (H' = 2.1486; D = 0.1366), followed by a lower diversity in soils under pasture (H' = 1.9629; D = 0.1715), crops (H' = 1.4613; D = 0.3309) and secondary forest (H' = 0.8633; D = 0.5405). All cloned inserts were similar to the Crenarchaeota amoA gene clones (identity > 95 %) previously found in soils and sediments and distributed primarily in three major phylogenetic clusters. The findings indicate that agricultural systems of indigenous people and cattle pasture affect the archaeal community structure and diversity of ammonia-oxidizing Archaea in western Amazon soils.
Resumo:
The objective of the present work was to determine the inheritance and stability of transgenes of a transgenic bean line expressing the genes rep-trap-ren from Bean golden mosaic virus and the bar gene. Crosses were done between the transgenic line and four commercial bean cultivars, followed by four backcrosses to the commercial cultivars. Progenies from each cross were evaluated for the presence of the transgenes by brushing the leaves with glufosinate ammonium and by polymerase chain reaction using specific oligonucleotides. Advanced generations were rub-inoculated with an isolate of Bean common mosaic necrosis virus (BCMNV). The transgenes were inherited consistently in a Mendelian pattern in the four crosses studied. The analyzed lines recovered close to 80% of the characteristics of the recurrent parent, as determined by the random amplified DNA markers used, besides maintaining important traits such as resistance to BCMNV. The presence of the transgene did not cause any detectable undesirable effect in the evaluated progenies.
Resumo:
Apple stem grooving virus (ASGV) is one of the most important viruses infecting fruit trees. This study aimed at the molecular characterization of ASGV infecting apple (Malus domestica) plants in Santa Catarina (SC). RNA extracted from plants infected with isolate UV01 was used as a template for RT-PCR using specific primers. An amplified DNA fragment of 755 bp was sequenced. The coat protein gene of ASGV isolate UV01 contains 714 nucleotides, coding for a protein of 237 amino acids with a predicted Mr of approximately 27 kDa. The nucleotide and the deduced amino acid sequences of the coat protein gene showed identities of 90.9% and 97.9%, respectively, with a Japanese isolate of ASGV. Very high amino acid homologies (98.7%) were also found with Citrus tatter leaf capillovirus (CTLV), a very close relative of ASGV. These results indicate low coat protein gene variability among Capillovirus isolates from distinct regions. In a restricted survey, mother stocks in orchards and plants introduced into the country for large scale fruit production were indexed and shown to be infected by ASGV (20%), usually in a complex with other (latent) apple viruses (80%).
Resumo:
Print-capture (PC) Polymerase chain reaction (PCR) was evaluated as a novel detection method of plant viruses. Tomato (Lycopersicon esculentum) plants infected with begomovirus (fam. Geminiviridae, gen. Begomovirus) and viruliferous whiteflies were used to study the efficiency of the method. Print-capturing steps were carried out using non-charged nylon membrane or filter paper as the solid support for DNA printings. Amplified DNA fragments of expected size were consistently obtained by PCR from infected plants grown in a greenhouse, after direct application of printed materials to the PCR mix. However, virus detection from a single whitefly and from field-grown tomato samples required a high temperature treatment of printed material prior to PCR amplification. Comparison of nylon membrane and filter paper as the solid support revealed the higher efficiency of the nylon membrane. The application of print-capture PCR reduces the chances of false-positive amplification by reducing manipulation steps during preparation of the target DNA. This method maintains all the advantages of PCR diagnosis, such as the high sensitivity and no requirement of radioactive reagents.
Resumo:
In order to develop a molecular method for detection and identification of Xanthomonas campestris pv. viticola (Xcv) the causal agent of grapevine bacterial canker, primers were designed based on the partial sequence of the hrpB gene. Primer pairs Xcv1F/Xcv3R and RST2/Xcv3R, which amplified 243- and 340-bp fragments, respectively, were tested for specificity and sensitivity in detecting DNA from Xcv. Amplification was positive with DNA from 44 Xcv strains and with DNA from four strains of X. campestris pv. mangiferaeindicae and five strains of X. axonopodis pv. passiflorae, with both primer pairs. However, the enzymatic digestion of PCR products could differentiate Xcv strains from the others. None of the primer pairs amplified DNA from grapevine, from 20 strains of nonpathogenic bacteria from grape leaves and 10 strains from six representative genera of plant pathogenic bacteria. Sensitivity of primers Xcv1F/Xcv3R and RST2/Xcv3R was 10 pg and 1 pg of purified Xcv DNA, respectively. Detection limit of primers RST2/Xcv3R was 10(4) CFU/ml, but this limit could be lowered to 10² CFU/ml with a second round of amplification using the internal primer Xcv1F. Presence of Xcv in tissues of grapevine petioles previously inoculated with Xcv could not be detected by PCR using macerated extract added directly in the reaction. However, amplification was positive with the introduction of an agar plating step prior to PCR. Xcv could be detected in 1 µl of the plate wash and from a cell suspension obtained from a single colony. Bacterium identity was confirmed by RFLP analysis of the RST2/Xcv3R amplification products digested with Hae III.
Resumo:
Sapovirus of the Caliciviridae family is an important agent of acute gastroenteritis in children and piglets. The Sapovirus genus is divided into seven genogroups (G), and strains from the GIII, GVI and GVII are associated with infections in swine. Despite the high prevalence in some countries, there are no studies related to the presence of porcine enteric sapovirus infections in piglets in Brazil. In the present study, 18 fecal specimens from piglets up to 28 days were examined to determine the presence of sapovirus genome by RT-PCR assay, using primers designed to amplify a 331 bp segment of the RNA polymerase gene. In 44.4% (8/18) of fecal samples, an amplified DNA fragment was obtained. One of these fragments was sequenced and submitted to molecular and phylogenetic analysis. This analysis revealed high similarity, with nucleotides (87%) and amino acids (97.8%), to the Cowden strain, the GIII prototype of porcine enteric calicivirus. This is the first description of sapovirus in Brazilian swine herds.
Resumo:
The goal of this study was to characterize the epidemiological situation and the factors involved in the prevalence of babesiosis and anaplasmosis in cattle in the dairy basin of Parnaíba, Piauí, Brazil. The study was conducted in 22 farms, and collected blood samples from 202 cattle to study serological, molecular and determination of the packed cell volume (PCV). On the farms were applied surveys involving epidemiological aspects. Seroprevalence rates were: Babesia bigemina 52.5%, B. bovis 68.8%, and Anaplasma marginale 89.1%. Of the samples analyzed, 73.3% were reactive for Babesia spp. and A. marginale, showing co-infection. In PCR, B. bigemina and B. bovis were positive in 52.0% and 33.2% respectively, and A. marginale in 76.2%. Of these, 51.5% amplified DNA of Babesia spp. and A. marginale. The semi-intensive management predominated in 68.0% of the farms studied. The clinical history of babesiosis and anaplasmosis, was reported from 73% of the farms. There was no significant difference (p>0.05) between age groups and for the PCV of positive compared with negative animals. The study indicates that in this region is enzootic instability for babesiosis and enzootic stability for anaplasmosis, reinforcing the fact that in Brazil there are areas of enzootic instability, even in tropical regions of the country. The PCR technique was a valuable tool for the diagnosis of these diseases and may be used to characterize a geographic region.
Resumo:
The objective of the present study was to evaluate the contribution of the shared epitope (SE), the rheumatoid arthritis (RA) protection model, and the occurrence of anti-cyclic citrullinated peptide (anti-CCP) antibodies in RA patients from a genetically diverse population. One hundred and forty Brazilian RA patients and 161 matched controls were typed for HLA-DRB1 alleles using amplified DNA hybridized with sequence-specific oligonucleotide probes or primers. Patients were stratified according to the presence or absence of SE (DRB1*0401, *0404, *0405, *0101, *1001, and *1402), of the DERAA alleles (DRB1*0103, *0402, *1102, *1103, *1301, *1302, and *1304), and X (all other alleles). Anti-CCP antibodies were measured by ELISA. The combined frequency of SE-positive alleles was significantly greater (76.4 vs 23.6%, P < 0.0001) than the controls. The SE/SE and SE/X genotypes were over-represented (P < 0.0001, OR = 6.02) and DERAA/X was under-represented in RA patients (P < 0.001, OR = 0.49), whereas the frequencies of the SE/DERAA, X/X and X/DERAA genotypes were not significantly different from controls. The frequency of anti-CCP antibodies was higher in SE-positive patients than in SE-negative patients (64.6 vs 44.7%, P = 0.03; OR = 2.25). Although the Brazilian population is highly miscegenated, the results of this study support the findings observed in most genetically homogeneous populations with RA; however, they are not mutually exclusive but rather complementary. The participation of DRB1-DERAA alleles in protection against RA was also observed (OR = 0.4; 95%CI = 0.23-0.68).
Resumo:
The phlebotomine sand fly Lutzomyia longipalpis has been incriminated as a vector of American visceral leishmaniasis, caused by Leishmania chagasi. However, some evidence has been accumulated suggesting that it may exist in nature not as a single but as a species complex. Our goal was to compare four laboratory reference populations of L. longipalpis from distinct geographic regions at the molecular level by RAPD-PCR. We screened genomic DNA for polymorphic sites by PCR amplification with decamer single primers of arbitrary nucleotide sequences. One primer distinguished one population (Marajó Island, Pará State, Brazil) from the other three (Lapinha Cave, Minas Gerais State, Brazil; Melgar, Tolima Department, Colombia and Liberia, Guanacaste Province, Costa Rica). The population-specific and the conserved RAPD-PCR amplified fragments were cloned and shown to differ only in number of internal repeats.
Resumo:
Susceptibility of snails to infection by certain trematodes and their suitability as hosts for continued development has been a bewildering problem in host-parasite relationships. The present work emphasizes our interest in snail genetics to determine what genes or gene products are specifically responsible for susceptibility of snails to infection. High molecular weight DNA was extracted from both susceptible and non-susceptible snails within the same species Biomphalaria tenagophila. RAPD was undertaken to distinguish between the two types of snails. Random primers (10 mers) were used to amplify the extracted DNA by the polymerase chain reaction (PCR) followed by polyacrylamide gel electrophoresis (PAGE) and silver staining. The results suggest that RAPD represents an efficient means of genome comparison, since many molecular markers were detected as genetic variations between susceptible and non-susceptible snails.
Resumo:
Our purpose was to compare the genetic polymorphism of six samples of P. brasiliensis (113, 339, BAT, T1F1, T3B6, T5LN1), with four samples of P. cerebriformis (735, 741, 750, 361) from the Mycological Laboratory of the Instituto de Medicina Tropical de São Paulo, using Random Amplified Polymorphic DNA Analysis (RAPD). RAPD profiles clearly segregated P. brasiliensis and P. cerebriformis isolates. However, the variation on band patterns among P. cerebriformis isolates was high. Sequencing of the 28S rDNA gene showed nucleotide conservancy among P. cerebriformis isolates, providing basis for taxonomical grouping, and disclosing high divergence to P. brasiliensis supporting that they are in fact two distinct species. Moreover, DNA sequence suggests that P. cerebriformis belongs in fact to the Aspergillus genus.