11 resultados para Alkenes
em Scielo Saúde Pública - SP
Resumo:
A general overview about the more useful activating agents of the hydrogen peroxide in the epoxidation of unfunctionalized alkenes, focusing mechanistic proposals. Moreover, reactivity and stereochemistry, including the stereogenic effect of the hydroxyl group is presented.
Resumo:
The hexane and methanolic extracts from pheromonal glands of Castnia licus (Drury) virgin females have been studied. Analyses by gas chromatography and mass spectrometry allowed us to determine the major constituents present in the hexane extract as n-alkanes C21 to C30, (Z)-9-hexadecenoic acid (C16), and (Z)-9-octadecenoic acid (C18) and hexadecanoic acid (C16). Aldehyds, alkenes and acetates were also detected in low concentrations in the extracts. Female pheromone glands were analysed for pheromone precursors using the methanolic extract. In addition to the compounds methyl hexadecanoate and methyl (Z)-9-octadecenoate, the glandular tissue contains a homologous series of methyl esters from C12 to C24. The hexane extract of the female abdomenal glands elicited activity from males in a behavioural bioassay.
Resumo:
A review on the electrophilic addition of iodine to alkenes in the presence of oxygen containing nucleophiles (cohalogenation reaction) is presented. The intermolecular reactions are discussed with emphasis in methods of reaction and synthetic applications of the resulting vicinal iodo-functionalized products (iodohydrins, beta-iodoethers and beta-iodocarboxylates).
Resumo:
Despite the fact that boranes are frequently used in amide reductions, the reaction mechanisms of the involved are note well known. This work presents the results of a bibliographic search on probable amide reduction mechanisms and an analysis of the existing literature. Steric and electronic effects were considered in light of reactivity since it could be concluded that the formation of intermediates and products depends mainly on the substitution patterns of both the boron and nitrogen atoms. Otherwise, results described in the literature for the reactions of boranes, sodium borohydride, lithium aluminum hydride, alkylboranes or haloboranes with others functional groups such as carboxylic acids, esters, ketones and alkenes were analysed with the aim to obtain something about the N-substituted amide reactions employing boranes.
Resumo:
The asymmetric Michael addition reactions using chiral imines, under neutral conditions (deracemizing alkylation process), constitute one of the main methods for the stereocontrolled elaboration of quaternary carbon centers. This protocol is based on the conjugate addition of secondary chiral enamines to electron-deficient alkenes. The focus of this report deals with the discussion of regio- and stereochemical aspects of the deracemizing alkylation process concerning enamines bearing a resident chiral center.
Resumo:
Despite of being used as thermodynamic criterion to rank alkene stability in a number of undergraduate textbooks, the heat of hydrogenation does not describe adequately the relative stability of disubstituted alkenes. In this work, both the heat of formation and the heat of combustion were used as thermodynamic criteria to rank correctly the stability of alkenes according to the degree of alkyl substitution and also in the disubstituted series (geminal > trans > cis). An operational model based on molecular orbital and valence bond representations of hyperconjugation is proposed to show how this effect can explain the order of stability of this class of compounds.
Resumo:
In this paper we report the synthesis of biologically active compounds through a [3+4] cycloaddition reaction to produce the main frame structure, followed by several conventional transformations. The 1,2alpha,4alpha,5-tetramethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (11) obtained from a [3+4] cycloaddition reaction was converted into 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3-one (13) in 46% yield. This was further converted into the alcohols 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (14), 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3beta-ol (15), 1,2alpha,4alpha,5-tetramethyl-3-butyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (17), 1,2alpha,4alpha,5-tetramethyl-3-hexyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (18) and 1,2alpha,4alpha,5-tetramethyl-3-decyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (19). Dehydration of 17, 18 and 19 with thionyl chloride in pyridine resulted in the alkenes 20, 21 and 22 in ca. 82% - 89% yields from starting alcohols. The herbicidal activity of the compounds synthesized was evaluated at a concentration of 100 µg g-1. The most active compound was 21 causing 42,7% inhibition against Cucumis sativus L.
Resumo:
The [4+3] cycloaddition was utilized in order to prepare 8-oxabicyclo[3.2.1]oct-6-en-3-one (1) derivatives. The correspondent acetonide 6 was converted into several alcohols (11-16). Addition of aryllithium reagents to 6 resulted in 3-(2-fluorophenyl)-6,7-exo-isopropylidenedioxy -8-oxabicyclo[3.2.1]octan-3alpha-ol (11, 72%) and 3-(2,4-dimethoxyphenyl)-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan -3alpha-ol (16, 20%). The 3-butyl-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (15, 56%) was obtained through a Grignard reaction. Reduction of 6 resulted in 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 beta-ol (7, 62%) and 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (8, 20%). The alcohols were treated with thionyl chloride in pyridine, and the corresponding alkenes were obtained with 31-80% yield. The effect of these compounds on the development of radicle and aerial parts of Sorghum bicolor was evaluated.
Resumo:
N-halosaccharins proved to be useful and alternative reagents for diverse organic transformations, such as halogenation of aromatic compounds, benzylic and alpha-carbonylic positions, cohalogenation of alkenes, oxidation of secondary alcohols, etc. Their preparation from saccharin, a cheap and readly available starting material, is simple.
Resumo:
The main methodologies in the asymmetric cyclopropanation of alkenes with emphasis on asymmetric catalysis are covered. Exemples are the Simmons-Smith reaction, the use of diazoalkanes and reactions carried out by decomposition of alpha-diazoesters in the presence of transition metals.
Resumo:
Basic concepts that play an important role in some organic reactions are revisited in this paper, which reports a pedagogical experience involving undergraduate and graduate students. A systematic procedure has been applied in order to use widespread available computational tools. This paper aims to discuss the use of computers in teaching electrophilic addition reactions to alkenes. Two classical examples have been investigated: addition to non-conjugated alkenes and addition to conjugated dienes. The results were compared with those normally discussed in organic textbooks. Several important concepts, such as conformational analysis and energy control (kinetic and thermodynamic) involved in reaction mechanisms can be taught more efficiently if one connects theoretical and practical tools.