310 resultados para Acute myocarditis
em Scielo Saúde Pública - SP
Resumo:
This paper aimed to verify the influence of the inoculum source (blood or metacyclic trypomastigote) and the route of inoculation (intraperitoneal or conjunctival) on the course of T. cruzi infection in dogs, using comparatively the T. cruzi strains Berenice-62 and Berenice-78. All dogs inoculated intraperitoneally became infected independently of the T. cruzi strain and source of trypomastigotes used. High level of infectivity was also observed when metacyclic trypomastigotes of both strains were inoculated by conjunctival route. However, when blood trypomastigotes were inoculated by conjunctival route the percentages of infectivity were significantly lower in dogs inoculated with both strains. Parasitaemia was significantly higher in animals infected with metacyclic trypomastigotes via the conjunctival route independently of the T. cruzi strain used. All animals infected with Berenice-78 strain showed severe acute myocarditis. On the other hand, animals infected with Berenice-62 showed severe acute myocarditis only when infected with metacyclic trypomastigote, via the intraperitoneal route. The results suggest that the source of the inoculum and the route of inoculation remarkably influence the evolution of the infection for the T. cruzi in the vertebrate host even when the same strain of the parasite is used.
Resumo:
The main clinical forms of Chagas disease (acute, indeterminate and chronic cardiac) present strong evidences for the participation of the immune system on pathogenesis. Although parasite multiplication is evident during acute infection, the intense acute myocarditis of this phase exhibits clear ultrastructural signs of cell-mediated immune damage, inflicted to parasitized and non-parasitized myocardiocytes and to the endothelium of myocardial capillaries (microangiopathy). Inflammation subsides almost completely when immunity decreases parasite load and suppressor factors modulate host reaction, but inflammation does not disappear when the disease enters the indeterminate phase. Inflammation becomes mild and focal and undergoes cyclic changes leading to complete resolution. However, the process is maintained because the disappearance of old focal lesions is balanced by the upsurge of new ones. This equilibrium allows for prolonged host survival in the absence of symptoms or signs of disease. The chronic cardiac form is represented by a delayed-type, cell-mediated diffuse myocarditis, that probably ensues when the suppressive mechanisms, operative during the indeterminate phase, become defaulted. The mechanism responsible for the transition from the indeterminate to the cardiac form, is poorly understood.
Resumo:
Protozoa are among the most important pathogens that can cause infections in immunocompromised hosts. These microorganisms particularly infect individuals with impaired cellular immunity, such as those with hematological neoplasias, renal or heart transplant patients, patients using high doses of corticosteroids, and patients with acquired immunodeficiency syndrome. The protozoa that most frequently cause disease in immunocompromised patients are Toxoplasma gondii, Trypanosoma cruzi, different Leishmania species, and Cryptosporidium parvum; the first two species cause severe acute meningoencephalitis and acute myocarditis, Leishmania sp. causes mucocutaneous or visceral disease, and Cryptosporidium can lead to chronic diarrhea with hepatobiliary involvement. Various serological, parasitological, histological and molecular methods for the diagnosis of these infections are currently available and early institution of specific therapy for each of these organisms is a basic measure to reduce the morbidity and mortality associated with these infections.
Resumo:
Severe destruction of intrinsic cardiac nerves has been reported in experimental acute Chagas myocarditis, followed by extensive regeneration during the chronic phase of the infection. To further study this subject, the sympathetic and para-sympathetic intracardiac nerves of mice infected with a virulent Trypanosoma cruzi strain were analyzed, during acute and chronic infection, by means of histological, histochemical, morphometric and electron microscopic techniques. No evidences of destructive changes were apparent. Histochemical demonstration for acetylcholinesterase and catecholamines did not reveal differences in the amount and distribution of intracardiac nerves, in mice with acute and chronic Chagas myocarditis or in non-infected controls. Mild, probably reversible ultrastructural neural changes were occasionally present, especially during acute myocarditis. Intrinsic nerves appeared as the least involved cardiac structure during the course of experimental Chagas disease in mice.
Resumo:
To clarify the mechanism responsible for the transient sinus tachycardia in rats with acute chagasic myocarditis, we have examined the cardiac sympathetic-parasympathetic balance of 29 rats inoculated with 200,000 parasites (Trypanosoma cruzi). Sixteen infected animals and 8 controls were studied between days 18 and 21 after inoculation (acute stage). The remaining 13 infected animals and 9 controls were studied between days 60 and 70 after inoculation (sub-acute stage). Under anesthesia (urethane 1.25 g/kg), all animals received intravenous atenolol (5 mg/kg) and atropine (10 mg/kg). Acute stage: The baseline heart rate of the infected animals was significantly higher than that of the controls (P < 0.0001). The magnitude of the negative chronotropic response to atenolol was 4 times that of the controls (P < 0.00001). This response correlated with the baseline heart rate (r= - 0.72, P < 0.001). The heart rate responses to the beta-blocker and to atropine, of the infected animals studied during the sub-acute stage, were not different from controls. These findings suggest that cardiac sympathetic activity is transiently enhanced and cardiac parasympathetic activity is not impaired, in rats with acute chagasic myocarditis. The transient predominance of cardiac sympathetic activity could explain, in part, the sinus tachycardia observed in the acute stage of experimentally-induced chagasic myocarditis.
Resumo:
We administered arecoline to rats, with experimentally induced chagasic myocarditis, in order to study the sinus node sensitivity to a muscarinic agonist. Sixteen month old rats were inoculated with 200,000 T. cruzi parasites ("Y" strain). Between days 18 and 21 (acute stage), 8 infected rats and 8 age-matched controls received intravenous arecoline as a bolus injection at the following doses: 5.0, 10.0, 20.0, 40.0, and 80.0 mug/kg. Heart rate was recorded before, during and after each dose of arecoline. The remaining 8 infected animals and 8 controls were subjected to the same experimental procedure during the subacute stage, i.e., days 60 to 70 after inoculation. The baseline heart rate, of the animals studied during the acute stage (349 ± 68 bpm, mean ± SD), was higher than that of the controls (250 ± 50 bpm, p < 0.005). The heart rate changes were expressed as percentage changes over baseline values. A dose-response curve was constructed for each group of animals. Log scales were used to plot the systematically doubled doses of arecoline and the induced-heart rate changes. The slope of the regression line for the acutely infected animals (r = - 0.99, b =1.78) was not different from that for the control animals (r = - 0.97, b = 1.61). The infected animals studied during the subacute stage (r = - 0.99, b = 1.81) were also not different from the age-matched controls (r = - 0.99, b = 1.26, NS). Consequently, our results show no pharmacological evidence of postjunctional hypersensitivity to the muscarinic agonist arecoline. Therefore, these results indirectly suggest that the postganglionic parasympathetic innervation, of the sinus node of rats with autopsy proved chagasic myocarditis, is not irreversibly damaged by Trypanosoma cruzi.
Resumo:
No vector transmitted cases of Chagas disease had been notified in the state of São Paulo since the 1970s. However, in March, 2006, the death of a six-year-old boy from the municipality of Itaporanga was notified to the Center for Epidemiological Survey of the São Paulo State Health Secretariat: an autochthonous case of acute Chagas disease. The postmortem histopathological examination performed in the Hospital das Clínicas of the Botucatu School of Medicine confirmed the diagnosis. Reference to hospital records, consultation with the health professionals involved in the case and interviews with members of the patient's family supplied the basis for this study. We investigated parasite route of transmission, probable local reservoirs and vectors. No further human cases of acute Chagas disease were diagnosed. No locally captured vectors or reservoirs were found infected with Trypanosoma cruzi. Alternative transmission hypotheses - such as the possible ingestion of foods contaminated with vector excreta - are discussed, as well as the need to keep previously endemic regions and infested houses under close surveillance. Clinicians should give due attention to such signs as uni- or bilateral palpebral edema, cardiac failure, myocarditis, pericarditis, anasarca and atypical signs of nephrotic syndrome or nephritis and consider the diagnostic hypothesis of Chagas disease.
Resumo:
Rhesus monkeys (macaca mulatta) were infected subcutaneously with 1.0 x 10**4 to 1.5 x 10**4 metacyclic trypomastigotes of Trypanosoma cruzi (Colombian strain). Parasitological and immunological parameters were evaluated in these animals for periods of 1 month to over 3 years. a chagona was observed between the 3 rd and the 13th day after infection (a.i) and patent parasitaemia between the 13th and 59th day a.i.. Thereafter, parasites were demonstrated only by haemoculture and/or xenodiagnosis. Circulating specifc IgM and IgC antibodies were observed as early as in the 2nd week a. i. IgG levels persisted until the end of the expriment, but IgM antibodies were detectable nine months a. i. Haematological alterations comprised leucocytosis and lymphocytosis. Eletrocardiographic alterations were minor and transient, similar to those observe in non-lethal human acute Chagas' myocarditis. Myocarditis and myositis, characterized by multiple foci of lympho-histiocyte inflammatory infiltrate, were present in monkeys sacrificed on the 41 th, 70th and 76 th day but not in the animal sacrificed 3 years and 3 months a. i.. The results suggest that Chagas' disease in rhesus monkeys reproduces the acute and indeterminate phases of human Chagas' disease.
Resumo:
In Chagas disease, during the acute phase, the establishment of inflammatory processes is crucial for Trypanosoma cruzi control in target tissues and for the establishment of host/parasite equilibrium. However, in about 30% of the patients, inflammation becomes progressive, resulting in chronic disease, mainly characterized by myocarditis. Although several hypothesis have been raised to explain the pathogenesis of chagasic myocardiopathy, including the persistence of the parasite and/or participation of autoimmune processes, the molecular mechanisms underlying the establishment of the inflammatory process leading to parasitism control but also contributing to the maintenance of T. cruzi-elicited chronic myocarditis remain unsolved. Trying to shed light on these questions, we have for several years been working with murine models for Chagas disease that reproduce the acute self-resolving meningoencephalitis, the encephalitis resulting of reactivation described in immunodeficient individuals, and several aspects of the acute and chronic myocarditis. In the present review, our results are summarized and discussed under the light of the current literature. Furthermore, rational therapeutic intervention strategies based on integrin-mediated adhesion and chemokine receptor-driven recruitment of leukocytes are proposed to control T. cruzi-elicited unbalanced inflammation.
Resumo:
Trypanosoma cruzi infection induces diverse alterations in immunocompetent cells and organs, myocarditis and congestive heart failure. However, the physiological network of disturbances imposed by the infection has not been addressed thoroughly. Regarding myocarditis induced by the infection, we observed in our previous work that Fas-L-/- mice (gld/gld) have very mild inflammatory infiltration when compared to BALB/c mice. However, all mice from both lineages die in the early acute phase. Therefore, in this work we studied the physiological connection relating arterial pressure, renal function/damage and cardiac insufficiency as causes of death. Our results show that a broader set of dysfunctions that could be classified as a cardio/anaemic/renal syndrome is more likely responsible for cardiac failure and death in both lineages. However, gld/gld mice had very early glomerular deposition of IgM and a more intense renal inflammatory response with reduced renal filtration, which is probably responsible for the premature death in the absence of significant myocarditis in gld/gld.
Resumo:
Chagas' disease, caused by the protozoan Trypanosoma cruzi, is a major cause of cardiovascular disability in countries where it is endemic. Damage to the heart microvasculature has been proposed to be an important factor in the pathogenesis of heart dysfunction. Endothelin-1 (ET-1) is a potent vasoconstrictor and exerts its effects via specific ET A and ET B receptors. A few studies have suggested a role for ET-1 and its receptors in the pathogenesis of Chagas' disease. We investigated the effects of treatment with bosentan, an ET A/ET B receptor antagonist, on the course of T. cruzi infection (Y strain) in C57Bl/6 mice. Treatment with bosentan (100 mg kg-1 day-1) was given per os starting day 0 after infection until sacrifice. Bosentan significantly increased myocardial inflammation, with no effects on parasitemia. Although the total number of nests was similar, a lower number of intact amastigote nests was found in the heart of bosentan-treated animals. Bosentan failed to affect the infection-associated increase in the cardiac levels of the cytokines IFN-g and TNF-a and the chemokines CCL2/MCP-1, CCL3/MIP-1a and CCL5/RANTES. In vitro, pre-incubation with ET-1 (0.1 µM) 4 h before infection enhanced the uptake of the parasites by peritoneal macrophages, and this effect was abrogated when macrophages were pre-treated with bosentan (1 µM) 15 min before incubation with ET-1. However, ET-1 did not alter killing of intracellular parasites after 48 h of in vitro infection. Our data suggest that bosentan-treated mice have a delay in controlling parasitism which is compensated for exacerbated inflammation. Infection is eventually controlled in these animals and lethality is unchanged, demonstrating that ET-1 plays a minor role in the protection against acute murine T. cruzi infection.
Resumo:
This study investigated the effect of acute exposition to zinc (Zn) on histology of the liver and testes of yellow tail lambari (Astyanax aff. bimaculatus). The exposure consisted of six concentrations of Zn (0, 3, 5, 10, 15, and 20 mg/L) for 96 hours of exposure. Fragments of liver and testis were routinely processed and embedded in plastic resin based on glycol methacrylate. Fragments of bones, muscles, liver and testis were dehydrated and digested to quantify the absorption levels of Zn in the tissue. Acute exposure to concentrations above 10mg/L has produced structural changes in the liver and gonads. The changes found in the liver were vascular congestion; decrease of cellular volume; displacement of the hepatocyte nucleus; necrosis; disarrangement of cordon structure; leukocyte infiltrate and vacuolization. The changes found in the gonads were ruptured cyst, delayed development of germ cells, pyknotic nucleus, cell cluster, displacement of cyst wall and vacuolization. The histological changes observed were compatible with the increasing concentration of zinc in environment, compromising liver and reproductive functions, because there was an increase in relative frequency of hepatocytes and reduced sperm production
Resumo:
A cohort study on acute respiratory infections, involving 270 children observed by pediatricians in their homes every 10 days over a period of 32 months, gave the opportunity to experience logistic and methodological problems seldom described in the literature. The purpose of this article is to alert researchers as to the difficulties faced when performing community-based studies in developing countries. Although a carefully planned project was undertaken, problem areas included the establishment of the target population, population dynamics, field related problems, laboratory aspects and data management. It is hoped that other investigators may benefit from the extensive experience gained from our program in foreseeing and coping with the difficulties involved.
Resumo:
OBJECTIVE: To determine the severity of dapsone (DDS) acute intoxication an uncommon medical event using clinical and laboratory parameters. METHODS: Two hundred and seventy four patients with acute DDS intoxication, aged 1 month to 50 years old, were studied and classified into four age groups. Clinical evaluation was assessed through a protocol and correlated with laboratory parameters. Spectrophotometric methods were used to analyze methemoglobinemia (MHbp) and dapsonemia (DDSp). RESULTS: The most prevalent clinical sign of intoxication was cyanosis, seen in 65.7% of the patients and in 100% of children less than 5 years of age. According to laboratory criteria, MHbp-related severe clinical intoxication was seen in 56.2% and DDSp-related occurred in 58% of the patients. Regarding DDSp, intoxication was considered severe when 20 tablets (100 mg each) were ingested, a median of 29 mug/ml. Regarding MHbp, intoxication was severe when 7.5 tablets were ingested, a median of 38% of the total Hb. The correlation between MHbp and DDSp was statistically significant (n=144, r=0.32, p<0.05). Negative correlation was observed between MHbp and the time elapsed since DDS intake (n=124, r=-0.34, p<0.001). There was also a negative correlation between DDSp and the time elapsed since DDS intake (n=63, r=-0.35, p<0.0001). CONCLUSIONS: Longitudinal analysis showed a significant association between methemoglobinemia and the time elapsed after the intake (t), according to the equation: Dapsonemia = 12.9256 - 0.0682t + 0.234 methemoglobinemia