94 resultados para Acetolactate synthase -- Inhibitors

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this study was to determine the activity of the enzyme acetolactate synthase in biotypes of wild poinsettia (Euphorbia heterophylla) with multiple resistance to ALS- and Protox- inhibitors in the presence and absence of imazapyr, imazethapyr and nicosulfuron. We conducted in vitro assay of ALS enzyme extracted from plants of Vitorino, Bom Sucesso do Sul and Medianeira biotypes (with multiple resistance) and a susceptible population in the absence and presence of imazapyr, imazethapyr and nicosulfuron. In the absence of herbicides, biotypes with multiple resistance showed higher affinity for the substrate of the enzyme compared with the susceptible population. The herbicides imazapyr, imazethapyr and nicosulfuron had little effect on the enzyme activity of ALS-resistant biotypes and, conversely, high inhibitory effect on ALS of the susceptible population. Resistance factors were very high, greater than 438, 963 and 474 for Vitorino, Bom Sucesso do Sul and Medianeira biotypes, respectively. The resistance to ALS inhibitors is due to the insensitivity of ALS to herbicides of both imidazolinone and sulfonylurea groups, characterizing a cross-resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

When in competition with cotton, Amaranthus retroflexus can cause high yield losses. Due to the limited availability of selective herbicides registered for post emergence control of this weed, the same herbicides have been used repeated times over the last few years, which may have selected resistant biotypes. Biotypes of A. retroflexus collected from the main areas of cotton cultivation in Brazil were submitted to dose-response trials, by applying the herbicides trifloxysulfuron-sodium and pyrithiobac-sodium in doses equivalent to 0, ¼, ½, 1, 2 and 4 times the recommended rates. Resistance to ALS inhibitors was confirmed in biotypes of A. retroflexus. Biotype MS 2 from Mato Grosso do Sul, was cross-resistant to both trifloxysulfuron-sodium and pyrithiobac-sodium, while biotype MS 1 was resistant to trifloxysulfuron-sodium only. Likewise, singular and cross resistance was also confirmed in biotypes from Goiás (GO 3, GO 4 and GO 6), in relation to trifloxysulfuron­sodium and pyrithiobac-sodium. One biotype from Mato Grosso (MT 13) was not resistant to any of the ALS inhibitors evaluated in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Weed biotypes resistant and susceptible to herbicides may have differences in their adaptive values. The aims of this study were to compare, under controlled and non-competitive condition, the growth analysis, germination features and seed weight of Fimbristylis miliacea (FIMMI) biotypes resistant and susceptible to acetolactate synthase (ALS) inhibiting herbicides. Experiments were conducted in a greenhouse and in a laboratory from October 2008 to February 2010. Two resistant biotypes (FIMMI 10 and FIMMI 12) and one susceptible biotype (FIMMI 13) were used for the studies. For the study on growth analysis, the treatments were arranged in a completely randomized experimental design with four replications and sampled at 21, 28, 35, 42, 49, 56, 69 days after emergence (DAE) and at flowering stage. For the studies on germination speed, germination and seed weight, the indexes for germination speed, percentage of germination at different temperatures and seed weight of the biotypes were determined. The results showed that the resistant biotype FIMMI 12 shows differences in all variables compared to the resistant biotype FIMMI 10 and compared to the susceptible biotype FIMMI 13, only for the evaluation at flowering. The susceptible biotype FIMMI 13 showed a higher germination speed index and higher germination rate when compared with the resistant biotypes. On the other hand, the resistant biotypes FIMMI 10 and FIMMI 12 showed higher seed weight.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT The objective of this research was to evaluate the occurance of multiple resistance of Sagittaria montevidensis (SAGMO) biotypes to acetolactate synthase (ALS) and photosystem II (PSII) inhibiting herbicides through dose-response experiments. The experiment was conducted in a greenhouse from October 2012 to March 2013, in Pelotas, RS. The experimental design was completely randomized, with four replications. Treatments were arranged in a triple factorial design: two biotypes of S. montevidensis(SAGMO 35 - susceptible to herbicides and SAGMO 32 - suspected to be multiple resistance to ALS and PSII inhibiting herbicides), four herbicides (penoxsulam, (imazethapyr+imazapic), bentazon and saflufenacil) and 8 rates of these herbicides (1/32x, 1/16x, 1/8x, 1/4x, 1/2x, 0x, 1x, 2x, 4x, 8x, 16x, 32x and 64x). SAGMO 32 biotype presented high levels of resistance to penoxsulam, (imazethapyr+imazapic) and bentazon. For a 50% reduction in dry matter of the resistant biotype rate of 138 and 2.46 times higher than the label required for the susceptible biotype of the herbicides (imazethapyr+imazapic) and bentazon, respectively, are required. Saflufenacil may be used successfully to controlSagittaria montevidensis resistant in irrigated rice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cholecystokinin (CCK) influences gastrointestinal motility, by acting on central and peripheral receptors. The aim of the present study was to determine whether CCK has any effect on isolated duodenum longitudinal muscle activity and to characterize the mechanisms involved. Isolated segments of the rat proximal duodenum were mounted for the recording of isometric contractions of longitudinal muscle in the presence of atropine and guanethidine. CCK-8S (EC50: 39; 95% CI: 4.1-152 nM) and cerulein (EC50: 58; 95% CI: 18-281 nM) induced a concentration-dependent and tetrodotoxin-sensitive relaxation. Nomeganitro-L-arginine (L-NOARG) reduced CCK-8S- and cerulein-induced relaxation (IC50: 5.2; 95% CI: 2.5-18 µM) in a concentration-dependent manner. The magnitude of 300 nM CCK-8S-induced relaxation was reduced by 100 µM L-NOARG from 73 ± 5.1 to 19 ± 3.5% in an L-arginine but not D-arginine preventable manner. The CCK-1 receptor antagonists proglumide, lorglumide and devazepide, but not the CCK-2 receptor antagonist L-365,260, antagonized CCK-8S-induced relaxation in a concentration-dependent manner. These findings suggest that CCK-8S and cerulein activate intrinsic nitrergic nerves acting on CCK-1 receptors in order to cause relaxation of the rat duodenum longitudinal muscle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ALS-inhibiting herbicides usually provide adequate weed control in irrigated rice fields. After consecutive years of use, the Cyperaceae species, globe fringerush (Fimbristylis miliacea) began to show resistance to ALS (acetolactate synthase) inhibitors. Globe fringerush is one of the most problematic herbicide-resistant weeds in irrigated rice in the state of Santa Catarina in the South of Brazil. The objective of this research was to examine cross resistance of globe fringerush to ALS inhibitors, under field conditions. Two experiments were conducted in a rice field naturally infested with ALS-resistant globe fringerush in Santa Catarina, in the 2008/09 and 2009/10 cropping seasons. The experimental units were arranged in randomized complete block design, with five replicates, consisting of two factors (herbicide and dose) in a 4 x 5 factorial arrangement. ALS herbicides included bispyribac-sodium, ethoxysulfuron, pyrazosulfuron-ethyl and penoxsulam. Six-leaf globe fringerush was sprayed with herbicide doses of 0, 0.5, 1, 2 and 4X the recommended doses in a spray volume of 200 L ha-1. The number of rice culm, filled and sterile grains, plant height, dry shoot biomass and grain yield were recorded. Globe fringerush control was evaluated 28 and 70 days after herbicide application (DAA); shoots were harvested at 13 weeks after herbicide application and dry weight recorded. Competition with globe fringerush reduced the number of culm and rice grain yield. The globe fringerush biotype in this field was resistant to all ALS herbicides tested. Penoxsulam had the highest level of activity among treatments at 28 and 70 DAA, but the control level was only 50% and 42%, respectively, in the second year of assessment. This was not enough to prevent rice yield loss. Alternative herbicides and weed control strategies are necessary to avoid yield losses in rice fields infested with ALS-resistant biotypes of globe fringerush.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rice is a major staple in many countries. Weed control is one of the factors limiting higher rice yield. ALS (acetolactate synthase)-inhibiting herbicides are desirable weed control herbicides because of their high efficacy, low toxicity to mammalians, and low rates used. An important herbicide characteristic is high selectivity to the crop, since it facilitates fast crop establishment and greater crop advantage over the weeds. The objectives of this work were to study the effects of increasing rates of the ALS-inhibiting herbicide penoxsulam on seed integrity and germination, and seedling and plant development of rice cv. BRS Pelota under controlled laboratory and greenhouse conditions. The results showed that penoxsulam affected rice germination and seedling and plant growth at rates above 54 g a.i. ha-1, and that penoxsulam is safe for rice seedling development at the currently recommended rates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ALS-inhibiting herbicides, especially metsulfuron-methyl, are widely used for weed control, mainly wheat and barley in southern Brazil. Raphanus raphanistrum is a major weed of winter crops. However, in recent years, R.raphanistrum, after being treated with metsulfuron, has shown no symptoms of toxicity, possibly due to herbicide resistance. Aiming to evaluate the existence of R.raphanistrum biotypes resistant to metsulfuron, an experiment was conducted in a greenhouse, in a completely randomized design with four replications. The plots consisted of pots with six plants. The treatments consisted of the interaction of resistant R. raphanistrum (biotype R) and susceptible R. raphanistrum (biotypes S) with ten doses of the herbicide (0.0; 0.6; 1.2; 2.4; 4.8; 9.6; 19.2; 38.4; 76.8 and 153.6 g i.a. ha-1). The application of the test herbicides occurred when the crop was at the stage of 3 to 4 true leaves. The variables analyzed were control and dry matter accumulation. Statistical analysis of dose-response curves was performed by non linear regression. Biotype S was susceptible to the herbicide even at doses below the recommended. Biotype R was insensitive to the herbicide obtaining values of resistance factor (F) higher than 85. The dose-response curve confirmed the existence of R. raphanistrum biotypes with high level of resistance to metsulfuron-methyl.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The repetitive use of iodosulfuron for the control of weeds in winter cereals in the south of Brazil has favored the emergence of resistant Raphanus sativus biotypes. The objective of this study was to evaluate: the response of Raphanus sativus biotypes susceptible and resistant to different dosages of iodosulfuron; the control of biotypes with alternative registered herbicides for the control of the species in crops of wheat, corn and soybean; and the existence of cross-resistance of the biotypes. Thus, four experiments were done in a greenhouse, with a completely randomized design and four replicates. The experimental units were composed of vases with a volumetric capacity of 0.75 L filled with substrate, containing a plant each. For the dose-response curve, three biotypes (factor A) and nine doses of the iodosulfuron herbicide (factor B) were used. For the alternative control, the recommendation was herbicides in pre or postemergence of the crops, and the crossed-resistance was evaluated by using herbicides that inhibit the ALS enzyme of different chemical groups. The analyzed variables were control and shoot dry matter. GR50 of the susceptible biotype (B1) was 0.11 g a.i. ha-1, whereas GR50 of resistant biotypes (B4 and B13) was 102.9 and 86.8 g a.i. ha-1 of the iodosulfuron herbicide, respectively. The resistant biotypes presented crossed resistance to herbicides that inhibit the ALS enzyme, where the control can be efficient with the use of herbicides with different action mechanisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The change in cellular reducing potential, most likely reflecting an oxidative burst, was investigated in arachidonic acid- (AA) stimulated leukocytes. The cells studied included the human leukemia cell lines HL-60 (undifferentiated and differentiated into macrophage-like and polymorphonuclear-like cells), Jurkat and Raji, and thymocytes and macrophages from rat primary cultures. The oxidative burst was assessed by nitroblue tetrazolium reduction. AA increased the oxidative burst until an optimum AA concentration was reached and the burst decreased thereafter. In the leukemia cell lines, optimum concentration ranged from 200 to 400 µM (up to 16-fold), whereas in rat cells it varied from 10 to 20 µM. Initial rates of superoxide generation were high, decreasing steadily and ceasing about 2 h post-treatment. The continuous presence of AA was not needed to stimulate superoxide generation. It seems that the NADPH oxidase system participates in AA-stimulated superoxide production in these cells since the oxidative burst was stimulated by NADPH and inhibited by N-ethylmaleimide, diphenyleneiodonium and superoxide dismutase. Some of the effects of AA on the oxidative burst may be due to its detergent action. There apparently was no contribution of other superoxide-generating systems such as xanthine-xanthine oxidase, cytochromes P-450 and mitochondrial electron transport chain, as assessed by the use of inhibitors. Eicosanoids and nitric oxide also do not seem to interfere with the AA-stimulated oxidative burst since there was no systematic effect of cyclooxygenase, lipoxygenase or nitric oxide synthase inhibitors, but lipid peroxides may play a role, as indicated by the inhibition of nitroblue tetrazolium reduction promoted by tocopherol.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The dorsal raphe nucleus (DRN) is the origin of ascending serotonergic projections and is considered to be an important component of the brain circuit that mediates anxiety- and depression-related behaviors. A large fraction of DRN serotonin-positive neurons contain nitric oxide (NO). Disruption of NO-mediated neurotransmission in the DRN by NO synthase inhibitors produces anxiolytic- and antidepressant-like effects in rats and also induces nonspecific interference with locomotor activity. We investigated the involvement of the 5-HT1A autoreceptor in the locomotor effects induced by NO in the DRN of male Wistar rats (280-310 g, N = 9-10 per group). The NO donor 3-morpholinosylnomine hydrochloride (SIN-1, 150, and 300 nmol) and the NO scavenger S-3-carboxy-4-hydroxyphenylglycine (carboxy-PTIO, 0.1-3.0 nmol) were injected into the DRN of rats immediately before they were exposed to the open field for 10 min. To evaluate the involvement of the 5-HT1A receptor and the N-methyl-D-aspartate (NMDA) glutamate receptor in the locomotor effects of NO, animals were pretreated with the 5-HT1A receptor agonist 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT, 8 nmol), the 5-HT1A receptor antagonist N-(2-[4-(2-methoxyphenyl)-1-piperazinyl]ethyl)-N-2-pyridinyl-cyclohexanecarboxamide maleate (WAY-100635, 0.37 nmol), and the NMDA receptor antagonist DL-2-amino-7-phosphonoheptanoic acid (AP7, 1 nmol), followed by microinjection of SIN-1 into the DRN. SIN-1 increased the distance traveled (mean ± SEM) in the open-field test (4431 ± 306.1 cm; F7,63 = 2.44, P = 0.028) and this effect was blocked by previous 8-OH-DPAT (2885 ± 490.4 cm) or AP7 (3335 ± 283.5 cm) administration (P < 0.05, Duncan test). These results indicate that 5-HT1A receptor activation and/or facilitation of glutamate neurotransmission can modulate the locomotor effects induced by NO in the DRN.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nitric oxide (NO) is a soluble gas that participates in important functions of the central nervous system, such as cognitive function, maintenance of synaptic plasticity for the control of sleep, appetite, body temperature, neurosecretion, and antinociception. Furthermore, during exercise large amounts of NO are released that contribute to maintaining body homeostasis. Besides NO production, physical exercise has been shown to induce antinociception. Thus, the present study aimed to investigate the central involvement of NO in exercise-induced antinociception. In both mechanical and thermal nociceptive tests, central [intrathecal (it) and intracerebroventricular (icv)] pretreatment with inhibitors of the NO/cGMP/KATP pathway (L-NOArg, ODQ, and glybenclamide) prevented the antinociceptive effect induced by aerobic exercise (AE). Furthermore, pretreatment (it, icv) with specific NO synthase inhibitors (L-NIO, aminoguanidine, and L-NPA) also prevented this effect. Supporting the hypothesis of the central involvement of NO in exercise-induced antinociception, nitrite levels in the cerebrospinal fluid increased immediately after AE. Therefore, the present study suggests that, during exercise, the NO released centrally induced antinociception.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have previously reported that in comparison with normal rats, the presence of experimental allergic encephalomyelitis (EAE) leads to decreased endogenous inhibitory activity (EIA) of Ca2+-dependent nitric oxide synthase (NOS) in both brain and serum, and increased expression of protein 3-nitrotyrosine (NT) in brain. In this work we show that animals recovered from the clinical signs of EAE are not different from controls in terms of either brain NOS activity, EIA of NOS, or NT expression. These results suggest that parallel to the reversal of the disease symptoms, a normalization of the production of nitric oxide and related species occurs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a model for designing antimalarial drugs based on interference with an essential metabolism developed by Plasmodium during its intraerythrocytic cycle, phospholipid (PL) metabolism. The most promising drug interference is choline transporter blockage, which provides Plasmodium with a supply of precursor for synthesis of phosphatidylcholine (PC), the major PL of infected erythrocytes. Choline entry is a limiting step in this metabolic pathway and occurs by a facilitated-diffusion system involving an asymmetric carrier operating according to a cyclic model. Choline transport in the erythrocytes is not sodium dependent nor stereospecific as demonstrated using stereoisomers of alpha and beta methylcholine. These last two characteristics along with distinct effects of nitrogen substitution on transport rate demonstrate that choline transport in the infected erythrocyte possesses characteristics quite distinct from that of the nervous system. This indicates a possible discrimination between the antimalarial activity (inhibition of choline transport in the infected erythrocyte) and a possible toxic effect through inhibition of choline entry in synaptosomes. Apart from the de novo pathway of choline, PC can be synthesized by N-methylation from phosphatidylethanolamine (PE). There is a de novo pathway for PE biosynthesis from ethanolamine in infected cells but phosphatidylserine (PS) decarboxylation also occurs. In addition, PE can be directly and abundantly synthesized from serine decarboxylation into ethanolamine, a pathway which is absent from the host. The variety of the pathways that exist for the biosynthesis of one given PL led us to investigate whether an equilibrium can occur between all PL metabolic pathways. Indeed, if alternative (compensative) pathway(s) can operate after blockage of the de novo PC biosynthesis pathway this would indicate a potential mechanism for resistance acquisition. Up until now, there is no evidence of such a compensative process occurring in Plasmodium-infected erythrocytes under physiological conditions. Besides, the discovery of a highly parasite-specific pathway (serine decarboxylation and the presence of PS synthase) constitutes a very attractive and promising target, which could be attacked if resistances are built up against choline analogs. Indeed, potential inhibitions of the serine decarboxylase pathway could be very useful in acting instead of, or in surgery with, choline analogs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Soybean genotypes grown in sub-tropical climate may exhibit lodging. The plant lodging is influenced by soil type and fertility level, sowing date, latitude and altitude of the location, plant population and conditions of crop development. Plant regulators and herbicides are able to avoid or reduce plant lodging. This study aimed to verify the effects of the growth regulators TIBA and daminozide on vegetative growth and yield of soybean cultivar CD 214 RR. The experiment was carried out at a field in randomized block design with four replications in a factorial scheme. The A factor was represented by the combination of regulators TIBA and daminozide and its concentrations, and the Factor B was seven times of evaluation of injury and plant height or eight times of evaluation of lodging. In the range of doses used, the application of daminozide resulted in greater injury to soybean plants than TIBA. The smaller plant height was achieved by the application of 6 g ha-1 of TIBA and 1200 g ha-¹ of daminozide. Treatments with daminozide (100 g ha-¹) and TIBA (10 g ha-1) stood out due to the reduced lodging of soybean plants. Grain weight increased linearly when the levels of TIBA increased. There was a negative correlation between lodging and grain yield and a positive correlation between plant height and lodging. There was also a negative correlation between injury caused by the application of plant regulators and lodging.