7 resultados para Acanthoica quattrospina flux
em Scielo Saúde Pública - SP
Resumo:
Background: Stress is associated with cardiovascular diseases. Objective: This study aimed at assessing whether chronic stress induces vascular alterations, and whether these modulations are nitric oxide (NO) and Ca2+ dependent. Methods: Wistar rats, 30 days of age, were separated into 2 groups: control (C) and Stress (St). Chronic stress consisted of immobilization for 1 hour/day, 5 days/week, 15 weeks. Systolic blood pressure was assessed. Vascular studies on aortic rings were performed. Concentration-effect curves were built for noradrenaline, in the presence of L-NAME or prazosin, acetylcholine, sodium nitroprusside and KCl. In addition, Ca2+ flux was also evaluated. Results: Chronic stress induced hypertension, decreased the vascular response to KCl and to noradrenaline, and increased the vascular response to acetylcholine. L-NAME blunted the difference observed in noradrenaline curves. Furthermore, contractile response to Ca2+ was decreased in the aorta of stressed rats. Conclusion: Our data suggest that the vascular response to chronic stress is an adaptation to its deleterious effects, such as hypertension. In addition, this adaptation is NO- and Ca2+-dependent. These data help to clarify the contribution of stress to cardiovascular abnormalities. However, further studies are necessary to better elucidate the mechanisms involved in the cardiovascular dysfunction associated with stressors. (Arq Bras Cardiol. 2014; [online].ahead print, PP.0-0)
Resumo:
In agricultural systems the N-NH4+ and N-NO3- contents is significantly affected by soil management. This study investigated the dynamics of inorganic nitrogen (N; NH4+ and NO3-) in an experimental evaluation of soil management systems (SMSs) adopted in 1988 at the experimental station of the ABC Foundation in Ponta Grossa, in the Central South region of the State of Paraná. The objective of this study was to evaluate the changes in N-NH4+ and N-NO3- flux in the surface layer of a Red Latosol arising from SMSs over a 12-month period. The experiment was arranged in a completely randomized block design in split plots, in three replications. The plots consisted of the following SMSs: 1) conventional tillage (CT); 2) minimum tillage (MT); 3) no-tillage with chisel plow every three years (NT CH); and 4) continuous no-tillage (CNT). To evaluate the dynamics of inorganic N, the subplots represented samplings (11 sampling times, T1 - T11). The ammonium N (N-NH4+) and nitric N (N-NO3-) contents were higher in systems with reduced tillage (MT and NT CH) and without tillage (CNT) than in the CT system. In the period from October 2003 to February 2004, the N-NH4+ was higher than the N-NO3- soil content. Conversely, in the period from May 2004 to July 2004, the N-NO3- was higher than the N-NH4+ content. The greatest fluctuation in the N-NH4+ and N-NO3- contents occurred in the 0-2.5 cm layer, and the highest peak in the N-NH4+ and N-NO3- concentrations occurred after the surface application of N. Both N-NH4+ and N-NO3- were strongly correlated with the soil organic C content, which indicated that these properties vary together in the system.
Resumo:
A large variety of techniques have been used to measure soil CO2 released from the soil surface, and much of the variability observed between locations must be attributed to the different methods used by the investigators. Therefore, a minimum protocol of measurement procedures should be established. The objectives of this study were (a) to compare different absorption areas, concentrations and volumes of the alkali trapping solution used in closed static chambers (CSC), and (b) to compare both, the optimized alkali trapping solution and the soda-lime trapping using CSC to measure soil respiration in sugarcane areas. Three CO2 absorption areas were evaluated (7; 15 and 20 % of the soil emission area or chamber); two volumes of NaOH (40 and 80 mL) at three concentrations (0.1, 0.25 and 0.5 mol L-1). Three different types of alkaline traps were tested: (a), 80 mL of 0.5 mol L-1 NaOH in glass containers, absorption area 15 % (V0.5); (b) 40 mL of 2 mol L-1 NaOH retained in a sponge, absorption area 80 % (S2) and (c) 40 g soda lime, absorption area 15 % (SL). NaOH concentrations of 0.5 mol L-1 or lower underestimated the soil CO2-C flux or CO2 flux. The lower limit of the alkali trap absorption area should be a minimum of 20 % of the area covered by the chamber. The 2 mol L-1 NaOH solution trap (S2) was the most efficient (highest accuracy and highest CO2 fluxes) in measuring soil respiration.
Resumo:
In view of the importance of the macroporosity for the water transport properties of soils, its quantitative assessment is a challenging task. Measurements of hydraulic conductivity (K) at different soil water tensions and the quantification of water-conducting macropores (θM) of a soil under different tillage systems could help understand the effects on the soil porous system and related hydraulic properties. The purpose of this study was to assess the effects of Conventional Tillage (CT), Chisel Plow (CP) and No Tillage (NT) on θM and on K; and to quantify the contribution of macroporosity to total water flux in a loam soil. A tension disc infiltrometer was used at two soil water pressure heads (-5 cm, and 0) to infer θM and K, during fallow. Macroporosity was determined based on the flow contribution between 0 and -5 cm water potentials (K0, K5, respectively), according to the Hagen-Poiseuille equation. The K0 values were statistically higher for CT than for NT and CP. The K5 values did not differ statistically among treatments. The mean K values varied between 0.20 and 3.70 cm/h. For CT, θM was significantly greater than for CP and NT, following the same trend as K0. No differences in θM were detected between CP and NT. With CT, the formation of water-conducting macropores with persistence until post-harvest was possible, while under CP preparation, the water-conducting macropores were not persistent. These results support the idea that tillage affects the soil water movement mainly by the resulting water-conducting macropores. Future studies on tillage effects on water movement should focus on macroporosity.
Resumo:
In nuclear reactors, the occurrence of critical heat flux leads to fuel rod overheating with clad fusion and radioactive products leakage. To predict the effects of such phenomenon, experiments are performed using electrically heated rods to simulate operational and accidental conditions of nuclear fuel rods. In the present work, it is performed a theoretical analysis of the drying and rewetting front propagation during a critical heat flux experiment, starting with the application of an electrical power step from steady state condition. After the occurrence of critical heat flux, the drying front propagation is predicted. After a few seconds, a power cut is considered and the rewetting front behavior is analytically observed. Studies performed with various values of coolant mass flow rate show that this variable has more influence on the drying front velocity than on the rewetting one.
Resumo:
The application of flux cored arc welding (FCAW) has increased in manufacturing and fabrication. Even though FCAW is well known for its good capability in producing quality welds, few reports have been published on the cause of the relatively high diffusible hydrogen content in the weld metal and its relation with the ingredients used in the wire production and with the welding parameters (mainly welding current). This paper describes experiments where data obtained from weld metal diffusible hydrogen analysis, metal droplet collection, and high-speed recording of metal droplet transfer were used to evaluate the effect of welding current on diffusible hydrogen content in the weld metal. The results from gas chromatography analysis showed that weld metal hydrogen content indeed increased with welding current. A polynomial regressional analysis concluded that hydrogen increase with current was better described by a linear function with proportional constant of approximately 0.7 or 70%. Different from the GMA welding transfer behavior, statistical analysis showed only a small increase in metal droplet size with increasing current. The metal transfer mode remained in the globular range for currents between 100 and 150 A. The most surprising findings were with the high-speed cinematography recording. Observing the high speed movies, it was possible to see that at low current, "unmelted" flux sporadically touched the weld pool but at higher current, the flux remained touching the weld pool during the whole time of droplet formation and transfer. It is believed that since the flux has ingredients that contain hydrogen, hydrogen passes through the arc undisturbed, going to the weld bead intact and increasing the hydrogen content in the weld metal. Another important observation is regarding to droplet size. Droplet size increased with increasing current because forces from decomposed gases from the flux could sustain the droplets, retarding their transfer and allowing them to grow.
Resumo:
We investigated the prognostic effects of high-flux hemodialysis (HFHD) and low-flux hemodialysis (LFHD) in patients with chronic kidney disease (CKD). Both an electronic and a manual search were performed based on our rigorous inclusion and exclusion criteria to retrieve high-quality, relevant clinical studies from various scientific literature databases. Comprehensive meta-analysis 2.0 (CMA 2.0) was used for the quantitative analysis. We initially retrieved 227 studies from the database search. Following a multi-step screening process, eight high-quality studies were selected for our meta-analysis. These eight studies included 4967 patients with CKD (2416 patients in the HFHD group, 2551 patients in the LFHD group). The results of our meta-analysis showed that the all-cause death rate in the HFHD group was significantly lower than that in the LFHD group (OR=0.704, 95%CI=0.533-0.929, P=0.013). Additionally, the cardiovascular death rate in the HFHD group was significantly lower than that in the LFHD group (OR=0.731, 95%CI=0.616-0.866, P<0.001). The results of this meta-analysis clearly showed that HFHD decreases all-cause death and cardiovascular death rates in patients with CKD and that HFHD can therefore be implemented as one of the first therapy choices for CKD.