121 resultados para ATP-diphosphohydrolase
em Scielo Saúde Pública - SP
Resumo:
Schistosoma mansoni ATP diphosphohydrolase isoforms and potato apyrase share conserved epitopes. By enzyme-linked immunosorbent assays, elevated levels of IgM, IgG2a and IgG1 antibody reactivity against potato apyrase were observed in S. mansoni-infected BALB/c mice during the acute phase of infection, while only IgM and IgG1 antibody reactivity levels maintained elevated during the chronic phase of infection. Antibody reactivity against potato apyrase was monitored over an 11-month period in chronically-infected mice treated with oxamniquine. Eleven months later, the level of seropositive IgM decreased significantly (~30%) compared to the level found in untreated, infected mice. The level of seropositive IgG1 decreased significantly four months after treatment (MAT) (61%) and remained at this level even after 11 months. The IgG2a reactivity against potato apyrase, although unchanged during chronic phase to 11 MAT, appeared elevated again in re-infected mice suggesting a response similar to that found during the acute phase. BALB/c mouse polyclonal anti-potato apyrase IgG reacted with soluble egg antigens probably due to the recognition of parasite ATP diphosphohydrolase. This study, for the first time, showed that the IgG2a antibody from S. mansoni-infected BALB mice cross-reacts with potato apyrase and the level of IgG2a in infected mice differentiates disease phases. The results also suggest that different conserved-epitopes contribute to the immune response in schistosomiasis.
Resumo:
Potato apyrase, a soluble ATP-diphosphohydrolase, was purified to homogeneity from several clonal varieties of Solanum tuberosum. Depending on the source of the enzyme, differences in kinetic and physicochemical properties have been described, which cannot be explained by the amino acid residues present in the active site. In order to understand the different kinetic behavior of the Pimpernel (ATPase/ADPase = 10) and Desirée (ATPase/ADPase = 1) isoenzymes, the nucleotide-binding site of these apyrases was explored using the intrinsic fluorescence of tryptophan. The intrinsic fluorescence of the two apyrases was slightly different. The maximum emission wavelengths of the Desirée and Pimpernel enzymes were 336 and 340 nm, respectively, suggesting small differences in the microenvironment of Trp residues. The Pimpernel enzyme emitted more fluorescence than the Desirée apyrase at the same concentration although both enzymes have the same number of Trp residues. The binding of the nonhydrolyzable substrate analogs decreased the fluorescence emission of both apyrases, indicating the presence of conformational changes in the neighborhood of Trp residues. Experiments with quenchers of different polarities, such as acrylamide, Cs+ and I- indicated the existence of differences in the nucleotide-binding site, as further shown by quenching experiments in the presence of nonhydrolyzable substrate analogs. Differences in the nucleotide-binding site may explain, at least in part, the kinetic differences of the Pimpernel and Desirée isoapyrases.
Resumo:
The effects of transient forebrain ischemia, reperfusion and ischemic preconditioning on rat blood platelet ATP diphosphohydrolase and 5'-nucleotidase activities were evaluated. Adult Wistar rats were submitted to 2 or 10 min of single ischemic episodes, or to 10 min of ischemia 1 day after a 2-min ischemic episode (ischemic preconditioning) by the four-vessel occlusion method. Rats submitted to single ischemic insults were reperfused for 60 min and for 1, 2, 5, 10 and 30 days after ischemia; preconditioned rats were reperfused for 60 min 1 and 2 days after the long ischemic episode. Brain ischemia (2 or 10 min) inhibited ATP and ADP hydrolysis by platelet ATP diphosphohydrolase. On the other hand, AMP hydrolysis by 5'-nucleotidase was increased after 2, but not 10, min of ischemia. Ischemic preconditioning followed by 10 min of ischemia caused activation of both enzymes. Variable periods of reperfusion distinctly affected each experimental group. Enzyme activities returned to control levels in the 2-min group. However, the decrease in ATP diphosphohydrolase activity was maintained up to 30 days of reperfusion after 10-min ischemia. 5'-Nucleotidase activity was decreased 60 min and 1 day following 10-min ischemia; interestingly, enzymatic activity was increased after 2 and 5 days of reperfusion, and returned to control levels after 10 days. Ischemic preconditioning cancelled the effects of 10-min ischemia on the enzymatic activities. These results indicate that brain ischemia and ischemic preconditioning induce peripheral effects on ecto-enzymes from rat platelets involved in nucleotide metabolism. Thus, ATP, ADP and AMP degradation and probably the generation of adenosine in the circulation may be altered, leading to regulation of microthrombus formation since ADP aggregates platelets and adenosine is an inhibitor of platelet aggregation.
Resumo:
We have previously showed that Schistosoma mansoni ATP-diphosphohydrolase and Solanum tuberosum potato apyrase share epitopes and the vegetable protein has immunostimulatory properties. Here, it was verified the in situ cross-immunoreactivity between mice NTPDases and anti-potato apyrase antibodies produced in rabbits, using confocal microscopy. Liver samples were taken from Swiss Webster mouse 8 weeks after infection with S. mansoni cercariae, and anti-potato apyrase and TRITC-conjugated anti-rabbit IgG antibody were tested on cryostat sections. The results showed that S. mansoni egg ATP diphosphohydrolase isoforms, developed by anti-potato apyrase, are expressed in miracidial and egg structures, and not in granulomatous cells and hepatic structures (hepatocytes, bile ducts, and blood vessels). Therefore, purified potato apyrase when inoculated in rabbit generates polyclonal sera containing anti-apyrase antibodies that are capable of recognizing specifically S. mansoni ATP diphosphohydrolase epitopes, but not proteins from mammalian tissues, suggesting that autoantibodies are not induced during potato apyrase immunization. A phylogenetic tree obtained for the NTPDase family showed that potato apyrase had lower homology with mammalian NTPDases 1-4, 7, and 8. Further analysis of potato apyrase epitopes could implement their potential use in schistosomiasis experimental models.
Resumo:
In this paper, we showed for the first time that the conserved domains within Schistosoma mansoni ATP diphosphohydrolase isoforms, shared with potato apyrase, possess epitopes for the IgG1 and IgG4 subtypes, as 24 (80%) of the 30 schistosomiasis patients were seropositive for this vegetable protein. The analyses for each patient cured (n = 14) after treatment (AT) with praziquantel revealed variable IgG1 and IgG4 reactivity against potato apyrase. Different antigenic epitopes shared between the vegetable and parasite proteins could be involved in susceptibility or resistance to S. mansoni AT with praziquantel and these possibilities should be explored.
Resumo:
Adenosine 5',5'''-P1,P4-tetraphosphate (Ap4A) and adenosine 5',5'''-P1,P5-pentaphosphate (Ap5A) are stored in and released from rat brain synaptic terminals. In the present study we investigated the hydrolysis of dinucleotides (Ap4A and Ap5A) in synaptosomes from the cerebral cortex of adult rats. Ap4A and Ap5A, but not Ap3A, were hydrolyzed at pH 7.5 in the presence of 20 mM Tris/HCl, 2.0 mM MgCl2, 10 mM glucose and 225 mM sucrose at 37oC. The disappearance of the substrates measured by FPLC on a mono-Q HR column was both time and protein dependent. Since synaptosome integrity was at least 90% at the end of the assay, hydrolysis probably occurred by the action of an ecto-enzyme. Extracellular actions of adenine dinucleotides at central nervous system terminate due to the existence of ecto-nucleotidases which specifically cleave these dinucleotides. These enzymes in association with an ATP diphosphohydrolase and a 5'-nucleotidase are able to promote the complete hydrolysis of dinucleotides to adenosine in the synaptic cleft.
Resumo:
Sertoli cells have been shown to be targets for extracellular purines such as ATP and adenosine. These purines evoke responses in Sertoli cells through two subtypes of purinoreceptors, P2Y2 and P A1. The signals to purinoreceptors are usually terminated by the action of ectonucleotidases. To demonstrate these enzymatic activities, we cultured rat Sertoli cells for four days and then used them for different assays. ATP, ADP and AMP hydrolysis was estimated by measuring the Pi released using a colorimetric method. Adenosine deaminase activity (EC 3.5.4.4) was determined by HPLC. The cells were not disrupted after 40 min of incubation and the enzymatic activities were considered to be ectocellularly localized. ATP and ADP hydrolysis was markedly increased by the addition of divalent cations to the reaction medium. A competition plot demonstrated that only one enzymatic site is responsible for the hydrolysis of ATP and ADP. This result indicates that the enzyme that acts on the degradation of tri- and diphosphate nucleosides on the surface of Sertoli cells is a true ATP diphosphohydrolase (EC 3.6.1.5) (specific activities of 113 ± 6 and 21 ± 2 nmol Pi mg-1 min-1 for ATP and ADP, respectively). The ecto-5'-nucleotidase (EC 3.1.3.5) and ectoadenosine deaminase activities (specific activities of 32 ± 2 nmol Pi mg-1 min-1 for AMP and 1.52 ± 0.13 nmol adenosine mg-1 min-1, respectively) were shown to be able to terminate the effects of purines and may be relevant for the physiological control of extracellular levels of nucleotides and nucleosides inside the seminiferous tubules.
Resumo:
A peptide (SmB2LJ; r175-194) that belongs to a conserved domain from Schistosoma mansoni SmATPDase 2 and is shared with potato apyrase, as predicted by in silico analysis as antigenic, was synthesised and its immunostimulatory property was analysed. When inoculated in BALB/c mice, this peptide induced high levels of SmB2LJ-specific IgG1 and IgG2a subtypes, as detected by enzyme linked immunosorbent assay. In addition, dot blots were found to be positive for immune sera against potato apyrase and SmB2LJ. These results suggest that the conserved domain r175-194 from the S. mansoni SmATPDase 2 is antigenic. Western blots were performed and the anti-SmB2LJ antibody recognised in adult worm (soluble worm antigen preparation) or soluble egg antigen antigenic preparations two bands of approximately 63 and 55 kDa, molecular masses similar to those predicted for adult worm SmATPDase 2. This finding strongly suggests the expression of this same isoform in S. mansoni eggs. To assess localisation of SmATPDase 2, confocal fluorescence microscopy was performed using cryostat sections of infected mouse liver and polyclonal antiserum against SmB2LJ. Positive reactions were identified on the external surface from the miracidium in von Lichtenberg's envelope and, in the outer side of the egg-shell, showing that this soluble isoform is secreted from the S. mansoni eggs.
Resumo:
Trichomonas vaginalis is a parasite of the human urogenital tract that causes trichomonosis, the most prevalent non-viral sexually transmitted disease. Ectonucleoside triphosphate diphosphohydrolase (NTPDase) family members, which hydrolyse extracellular ATP and ADP and ecto-5′-nucleotidase, which hydrolyses AMP, have been characterised in T. vaginalis. For trichomonad culture, the growth medium is supplemented with 10% serum, which is an important source of nutrients, such as adenosine. Here, we investigated the ATP metabolism of T. vaginalis trophozoites from long-term cultures and clinical isolates under limited bovine serum conditions (1% serum). The specific enzymatic activities were expressed as nmol inorganic phosphate (Pi) released/min/mg protein, the gene expression patterns were determined by reverse transcriptase-polymerase chain reaction, the extracellular adenine nucleotide hydrolysis was analysed by high performance liquid chromatography and the cell cycle analysis was assessed by flow cytometry. Serum limitation led to the profound activation of NTPDase and ecto-5'-nucleotidase activities. Furthermore, the levels of NTPDase A and B transcripts increased and extracellular ATP metabolism was activated, which led to enhanced ATP hydrolysis and the formation of ADP and AMP. Moreover, the cell cycle was arrested at the G0/G1 stage, which suggested adenosine uptake. Our data suggest that under conditions of serum limitation, NTPDase and ecto-5'-nucleotidase play a role in providing the adenosine required for T. vaginalis growth and that this process contributes to the establishment of parasitism.
Resumo:
The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.
Resumo:
Extracellular ATP may act as a danger signalling molecule, inducing inflammation and immune responses in infection sites. The ectonucleotidases NTPDase and ecto-5’-nucleotidase are enzymes that modulate extracellular nucleotide levels; these enzymes have been previously characterised in Trichomonas vaginalis. Iron plays an important role in the complex trichomonal pathogenesis. Herein, the effects of iron on growth, nucleotide hydrolysis and NTPDase gene expression in T. vaginalisisolates from female and male patients were evaluated. Iron from different sources sustainedT. vaginalis growth. Importantly, iron from haemoglobin (HB) and haemin (HM) enhanced NTPDase activity in isolates from female patients and conversely reduced the enzyme activity in isolates from male patients. Iron treatments could not alter the NTPDase transcript levels in T. vaginalis. Furthermore, our results reveal a distinct ATP, ADP and AMP hydrolysis profile between isolates from female and male patients influenced by iron from HB and HM. Our data indicate the participation of NTPDase and ecto-5’-nucleotidase in the establishment of trichomonas infection through ATP degradation and adenosine production influenced by iron.
Resumo:
O vermicomposto contém uma concentração elevada de substâncias húmicas e já é bem conhecido o efeito do seu uso sobre as propriedades do solo. No entanto, a ação direta das substâncias húmicas sobre o metabolismo das plantas é menos conhecida. O objetivo deste trabalho foi avaliar o uso de humatos extraídos de vermicomposto de esterco de curral com KOH 0,1 mol L-1 sobre o desenvolvimento e metabolismo de ATP em plântulas de alface. Após a germinação, plântulas de alface foram tratadas com os humatos em concentrações que variaram de 0 a 100 mg L-1 de C, durante quinze dias. Foram avaliados o crescimento da raiz e a atividade das bombas de H+ isoladas da fração microssomal do sistema radicular. Foi observado aumento na matéria fresca e seca do sistema radicular, bem como no número de sítios de mitose, raízes emergidas do eixo principal, na área e no comprimento radiculares, com o uso do humato na concentração de 25 mg L-1 de C. Também foi observado, nessa concentração, aumento significativo na hidrólise de ATP pelas bombas de H+, responsáveis pela geração de energia necessária à absorção de íons e pelo crescimento celular.
Resumo:
Um dos fatores mais limitantes para a produção de vermicomposto é a disponibilidade de esterco. Neste trabalho, foi avaliado o efeito da substituição parcial do esterco por bagaço de cana e por resíduos de leguminosa (Gliricidia sepium) na vermicompostagem sobre a qualidade do vermicomposto e sobre a bioatividade dos humatos, avaliadas por meio da análise do crescimento radicular e da atividade das bombas de H+ isoladas de raízes de alface. A substituição do esterco por bagaço de cana e por resíduos de leguminosas não acarretou prejuízo às características químicas dos vermicompostos. No entanto, os humatos isolados dos diferentes vermicompostos apresentaram características químicas distintas, tais como: acidez e propriedades óticas distintas. Os humatos produzidos a partir de esterco de bovino e da mistura esterco bovino + bagaço proporcionaram maiores estímulos no crescimento radicular das plantas de alface, sendo os mais indicados para uso na forma solúvel. A inclusão de resíduos de leguminosas no processo de vermicompostagem produziu humatos sem efeito sobre o desenvolvimento das raízes de alface.
Resumo:
Human skinned muscle fibers were used to investigate the effects of bovine serum albumin (BSA) on the tension/pCa relationship and on the functional properties of the Ca2+-release channel of the sarcoplasmic reticulum (SR). In both fast- and slow-type fibers, identified by their tension response to pSr 5.0, BSA (0.7-15 µM) had no effect on the Ca2+ affinity of the contractile proteins and elicited no tension per se in Ca2+-loaded fibers. In contrast, BSA (>1.0 µM) potentiated the caffeine-induced tension in Ca2+-loaded fibers, this effect being more intense in slow-type fibers. Thus, BSA reduced the threshold caffeine concentration required for eliciting detectable tension, and increased the amplitude, the rate of rise and the area under the curve of caffeine-induced tension. BSA also potentiated the tension elicited in Ca2+-loaded fibers by low-Mgv solutions containing 1.0 mM free ATP. These results suggest that BSA modulates the response of the human skeletal muscle SR Ca2+-release channel to activators such as caffeine and ATP.
Resumo:
Red blood cells (RBC) are viable if kept in an adequate preservative solution, although gradual changes in morphology and metabolism may occur. There is a gradual decrease in adenosine-5'-triphosphate (ATP) concentration, pH, glucose consumption, and enzyme activity during preservation. The normal discocyte shapes are initially replaced by echinocytes and stomatocytes and, at final stages, by spherocytes, the last step before splenic sequestration. Post-transfusional survival has been correlated with the ATP concentration. RBC preserved in ADSOL, a solution containing adenine, dextrose, sodium chloride, and mannitol, are viable for transfusion for up to 6 weeks. Erythrocytes from 10 blood units taken from healthy adult donors were preserved for 12 weeks in ADSOL at 4oC. We now report a significant correlation (r2 = 0.98) between the percentage of discocytes (89 to 7%) and ATP (100 to 10%) concentration in ADSOL-preserved RBC. The results suggest that the percent of discocyte shapes used as an indicator of ATP concentration may be a useful indicator for quality control of RBC viability in centers which have limited assay facilities.