117 resultados para ARTICULAR CHONDROCYTES
em Scielo Saúde Pública - SP
Resumo:
Tissue engineering encapsulated cells such as chondrocytes in the carrier matrix have been widely used to repair cartilage defects. However, chondrocyte phenotype is easily lost when chondrocytes are expanded in vitro by a process defined as “dedifferentiation”. To ensure successful therapy, an effective pro-chondrogenic agent is necessary to overcome the obstacle of limited cell numbers in the restoration process, and dedifferentiation is a prerequisite. Gallic acid (GA) has been used in the treatment of arthritis, but its biocompatibility is inferior to that of other compounds. In this study, we modified GA by incorporating sulfamonomethoxine sodium and synthesized a sulfonamido-based gallate, JJYMD-C, and evaluated its effect on chondrocyte metabolism. Our results showed that JJYMD-C could effectively increase the levels of the collagen II, Sox9, and aggrecan genes, promote chondrocyte growth, and enhance secretion and synthesis of cartilage extracellular matrix. On the other hand, expression of the collagen I gene was effectively down-regulated, demonstrating inhibition of chondrocyte dedifferentiation by JJYMD-C. Hypertrophy, as a characteristic of chondrocyte ossification, was undetectable in the JJYMD-C groups. We used JJYMD-C at doses of 0.125, 0.25, and 0.5 µg/mL, and the strongest response was observed with 0.25 µg/mL. This study provides a basis for further studies on a novel agent in the treatment of articular cartilage defects.
Resumo:
Chondrocytes and bone marrow mesenchymal stem cells (BMSCs) are frequently used as seed cells in cartilage tissue engineering. In the present study, we determined if the co-culture of rabbit articular chondrocytes and BMSCs in vitro promotes the expression of cartilaginous extracellular matrix and, if so, what is the optimal ratio of the two cell types. Cultures of rabbit articular chondrocytes and BMSCs were expanded in vitro and then cultured individually or at a chondrocyte:BMSC ratio of 4:1, 2:1, 1:1, 1:2, 1:4 for 21 days and cultured in DMEM/F12. BMSCs were cultured in chondrogenic induction medium. Quantitative real-time RT-PCR and Western blot were used to evaluate gene expression. In the co-cultures, type II collagen and aggrecan expression increased on days 14 and 21. At the mRNA level, the expression of type II collagen and aggrecan on day 21 was much higher in the 4:1, 2:1, and 1:1 groups than in either the articular chondrocyte group or the induced BMSC group, and the best ratio of co-culture groups seems to be 2:1. Also on day 21, the expression of type II collagen and aggrecan proteins in the 2:1 group was much higher than in all other groups. The results demonstrate that the co-culture of rabbit chondrocytes and rabbit BMSCs at defined ratios can promote the expression of cartilaginous extracellular matrix. The optimal cell ratio appears to be 2:1 (chondrocytes:BMSCs). This approach has potential applications in cartilage tissue engineering since it provides a protocol for maintaining and promoting seed-cell differentiation and function.
Resumo:
Damage to cartilage causes a loss of type II collagen (Col-II) and glycosaminoglycans (GAG). To restore the original cartilage architecture, cell factors that stimulate Col-II and GAG production are needed. Insulin-like growth factor I (IGF-I) and transcription factor SOX9are essential for the synthesis of cartilage matrix, chondrocyte proliferation, and phenotype maintenance. We evaluated the combined effect of IGF-I and SOX9 transgene expression on Col-II and GAG production by cultured human articular chondrocytes. Transient transfection and cotransfection were performed using two mammalian expression plasmids (pCMV-SPORT6), one for each transgene. At day 9 post-transfection, the chondrocytes that were over-expressing IGF-I/SOX9 showed 2-fold increased mRNA expression of the Col-II gene, as well as a 57% increase in Col-II protein, whereas type I collagen expression (Col-I) was decreased by 59.3% compared with controls. The production of GAG by these cells increased significantly compared with the controls at day 9 (3.3- vs 1.8-times, an increase of almost 83%). Thus, IGF-I/SOX9 cotransfected chondrocytes may be useful for cell-based articular cartilage therapies.
Resumo:
AA luxação da articulação temporomandibular ocorre quando o côndilo mandibular move-se para fora da cavidade glenóide e permanece travado anteriormente à eminência articular, sendo sua ocorrência repetitiva (luxação recidivante) geralmente associada a hipermobilidade mandibular e a inclinação da eminência articular. OBJETIVO: Neste estudo avaliou-se, clínica e radiograficamente, a técnica de eminectomia e do uso de miniplaca na eminência articular para tratamento da luxação recidivante da articulação temporomandibular de pacientes operados no Hospital Universitário Osvaldo Cruz (HUOC/UPE), no período de janeiro de 2001 a setembro de 2003. FORMA DE ESTUDO: Retrospectivo. MATERIAL E MÉTODO: A amostra foi composta por 11 pacientes. A cirurgia de eminectomia foi realizada em nove articulações de cinco pacientes, enquanto a cirurgia para colocação de miniplaca na eminência articular em 11 articulações de seis pacientes. A obtenção dos dados foi efetuada através da análise de prontuários e de nova consulta pós-operatória. RESULTADOS: Os resultados mostraram não haver maiores complicações pós-operatórias para as duas técnicas. A abertura bucal máxima foi maior nos pacientes operados pela técnica de eminectomia e nenhum dos pacientes apresentou recorrência da luxação. CONCLUSÃO: Concluiu-se que as duas técnicas mostraram-se eficientes para o tratamento da luxação recidivante da articulação temporomandibular.
Resumo:
Estudos sobre hipermobilidade têm despertado grande interesse, nas últimas décadas, por estarem associados a disfunções músculo-esqueléticas, bem como a anormalidades em vários sistemas orgânicos - como, por exemplo, o prolapso da valva mitral. Neste contexto, buscou-se agrupar e atualizar os conhecimentos da relação entre a hipermobilidade articular e o prolapso da valva mitral. Segundo a literatura, estudos mostram que alterações genéticas na composição do colágeno parecem ser a principal causa desta relação.
Resumo:
OBJETIVO: Avaliar a eficácia da técnica extra-capsular para o tratamento de ruptura do ligamento cruzado anterior em cães. MÉTODOS: Foi realizada a reparação cirúrgica extra-articular, sem artrotomia do ligamento cruzado anterior, com a utilização da fáscia lata autógena para estabilização da articulação do joelho em seis animais que apresentaram claudicação grave e movimento de gaveta positivo. RESULTADOS: A técnica cirúrgica extra-articular foi eficaz com boa estabilização articular e evolução satisfatória. CONCLUSÃO: A via extra capsular com uso da fáscia lata para correção da ruptura do ligamento cruzado anterior mostrou-se útil haja vista tratar-se de um procedimento simples e de rápida execução, causando o mínimo dano tecidual e recuperação pós-operatória eficiente.
Resumo:
OBJETIVO: Analisar os efeitos da injeção repetida de betametasona na concentração de proteoglicanos da cartilagem articular do joelhos normais de coelhos californianos de ambos os sexos. MÉTODOS: Os animais foram randomizados em oito grupos de dez animais cada. Três grupos controle (injeção ou não de solução salina isotônica) e cinco grupos de estudo - doses terapêuticas, repetidas ou não, de betametasona injetadas no joelho direito de cada coelho, com intervalos semanais. Após oito dias da última injeção prevista, cortes histológicos da cartilagem das áreas de apoio dos platôs tibiais foram corados com hematoxilina e eosina para análise por microscopia óptica, e com safranina O para a pesquisa da quantidade de proteoglicanos. A intensidade da coloração da safranina O foi quantificada em aparelho de histomorfometria, composto por microscópio Olympus BX 50 e microcomputador com software Image Pro-plus 4.5Ò. RESULTADOS: Não houve diferenças nos animais que tiveram seus joelhos injetados com betametasona uma, duas e quatro vezes quando comparados com os grupos controle. Nos animais que receberam seis e oito aplicações a intensidade da coloração com safranina O reduziu-se significativamente (p < 0,05) quando comparada tanto com grupos controle quanto com os outros de estudo. CONCLUSÃO: Foi possível demonstrar redução da concentração de proteoglicanos na matriz cartilaginosa articular dependente do efeito deletério cumulativo das repetidas injeções intra-articulares de betametasona.
Resumo:
We evaluated the mechanical behavior of the repaired surfaces of defective articular cartilage in the intercondylar region of the rat femur after a hydrogel graft implant. The results were compared to those for the adjacent normal articular cartilage and for control surfaces where the defects remained empty. Hydrogel synthesized by blending poly(2-hydroxyethyl methacrylate) and poly(methyl methacrylate-co-acrylic acid) was implanted in male Wistar rats. The animals were divided into five groups with postoperative follow-up periods of 3, 5, 8, 12 and 16 weeks. Indentation tests were performed on the neoformed surfaces in the knee joint (with or without a hydrogel implant) and on adjacent articular cartilage in order to assess the mechanical properties of the newly formed surface. Kruskal-Wallis analysis indicated that the mechanical behavior of the neoformed surfaces was significantly different from that of normal cartilage. Histological analysis of the repaired defects showed that the hydrogel implant filled the defect with no signs of inflammation as it was well anchored to the surrounding tissues, resulting in a newly formed articular surface. In the case of empty control defects, osseous tissue grew inside the defects and fibrous tissue formed on the articular surface of the defects. The repaired surface of the hydrogel implant was more compliant than normal articular cartilage throughout the 16 weeks following the operation, whereas the fibrous tissue that formed postoperatively over the empty defect was stiffer than normal articular cartilage after 5 weeks. This stiffness started to decrease 16 weeks after the operation, probably due to tissue degeneration. Thus, from the biomechanical and histological point of view, the hydrogel implant improved the articular surface repair.
Resumo:
The precise nature of hormones and growth factors directly responsible for cartilage maturation is still largely unclear. Since longitudinal bone growth occurs through endochondral bone formation, excess or deficiency of most hormones and growth factors strongly influences final adult height. The structure and composition of the cartilaginous extracellular matrix have a critical role in regulating the behavior of growth plate chondrocytes. Therefore, the maintenance of the three-dimensional cell-matrix interaction is necessary to study the influence of individual signaling molecules on chondrogenesis, cartilage maturation and calcification. To investigate the effects of insulin on both proliferation and induction of hypertrophy in chondrocytes in vitro we used high-density micromass cultures of chick embryonic limb mesenchymal cells. Culture medium was supplemented with 1% FCS + 60 ng/ml (0.01 µM) insulin and cultures were harvested at regular time points for later analysis. Proliferating cell nuclear antigen immunoreactivity was widely detected in insulin-treated cultures and persisted until day 21 and [³H]-thymidine uptake was highest on day 14. While apoptosis increased in control cultures as a function of culture time, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL)-labeled cells were markedly reduced in the presence of insulin. Type II collagen production, alkaline phosphatase activity and cell size were also lower in insulin-treated cultures. Our results indicate that under the influence of 60 ng/ml insulin, chick chondrocytes maintain their proliferative potential but do not become hypertrophic, suggesting that insulin can affect the regulation of chondrocyte maturation and hypertrophy, possibly through an antiapoptotic effect.
Resumo:
The expression of components present in the cartilaginous extracellular matrix is related to development, gender, and genotype, as well as to the biomechanical properties of each type of cartilage. In the present study, we analyzed small proteoglycans and glycosaminoglycans present in different cartilages of the chicken wing after extraction with guanidine hydrochloride or papain. Quantitative analysis of glycosaminoglycans showed a larger amount in humeral cartilage (around 200 mg/g tissue) than in articular cartilage of the radius and ulna, with 138 and 80 mg/g tissue, respectively. Non-collagenous proteins isolated were predominantly from cartilage in the proximal regions of the humerus and radius. D4 fractions obtained by ultracentrifugation were separated by DEAE-Sephacel and Octyl-Sepharose chromatography and analyzed by SDS-PAGE. Two bands of 57 and 70-90 kDa were observed for all samples treated with ß-mercaptoethanol. Immunoblotting of these proteins was positive for the small proteoglycans fibromodulin and decorin, respectively. Apparently, the 57-kDa protein is present in macromolecular complexes of 160 and 200 kDa. Chondroitin sulfate was detected in all regions. HPLC analysis of the products formed by chondroitinase AC and ABC digestion mainly revealed ß-D-glucuronic acid and N-acetyl ß-D-galactosamine residues. The 4-sulfation/6-sulfation ratio was close to 3, except for the proximal cartilage of the radius (2.5). These results suggest functional differences between the scapula-humerus, humerus-ulna, and humerus-radius joints of the chicken wing. This study contributes to the understanding of the physiology of cartilage and joints of birds under different types of mechanical stress.
Resumo:
The objective of the present research was to evaluate the usefulness of anti-cyclic citrullinated peptide (anti-CCP) antibodies and the IgM rheumatoid factor (IgM RF) test for the differential diagnosis of leprosy with articular involvement and rheumatoid arthritis (RA). Anti-CCP antibodies and IgM RF were measured in the sera of 158 leprosy patients (76 with and 82 without articular involvement), 69 RA patients and 89 healthy controls. Leprosy diagnosis was performed according to Ridley and Jopling classification criteria and clinical and demographic characteristics of leprosy patients were collected by a standard questionnaire. Leprosy patients with any concomitant rheumatic disease were excluded. Serum samples were obtained from all participants and frozen at _20°C. Measurement of anti-CCP antibodies and IgM RF were performed by ELISA, using a commercial second-generation kit, and the latex agglutination test, respectively. Anti-CCP antibodies and IgM RF were detected in low frequencies (2.6 and 1.3%, respectively) in leprosy patients and were not associated with articular involvement. Among healthy individuals both anti-CCP antibodies and IgM RF were each detected in 3.4% of the subjects. In contrast, in the RA group, anti-CCP antibodies were present in 81.2% and IgM RF in 62.3%. In the present study, both anti-CCP antibodies and IgM RF showed good positive predictive value for RA, helping to discriminate between RA and leprosy patients with articular involvement. However, anti-CCP antibodies were more specific for RA diagnosis in the population under study.
Resumo:
The mitogenic effects of periodic mechanical stress on chondrocytes have been studied extensively but the mechanisms whereby chondrocytes sense and respond to periodic mechanical stress remain a matter of debate. We explored the signal transduction pathways of chondrocyte proliferation and matrix synthesis under periodic mechanical stress. In particular, we sought to identify the role of the MEK1/2-ERK1/2 signaling pathway in chondrocyte proliferation and matrix synthesis following cyclic physiologic mechanical compression. Under periodic mechanical stress, both rat chondrocyte proliferation and matrix synthesis were significantly increased (P < 0.05) and were associated with increases in the phosphorylation of Src, PLCγ1, MEK1/2, and ERK1/2 (P < 0.05). Pretreatment with the MEK1/2-ERK1/2 selective inhibitor, PD98059, and shRNA targeted to ERK1/2 reduced periodic mechanical stress-induced chondrocyte proliferation and matrix synthesis (P < 0.05), while the phosphorylation levels of Src-Tyr418 and PLCγ1-Tyr783 were not inhibited. Proliferation, matrix synthesis and phosphorylation of MEK1/2-Ser217/221 and ERK1/2-Thr202/Tyr204 were inhibited after pretreatment with the PLCγ1 inhibitor U73122 in chondrocytes in response to periodic mechanical stress (P < 0.05), while the phosphorylation site of Src-Tyr418 was not affected. Inhibition of Src activity with PP2 and shRNA targeted to Src abrogated chondrocyte proliferation and matrix synthesis (P < 0.05) and attenuated PLCγ1, MEK1/2 and ERK1/2 activation in chondrocytes subjected to periodic mechanical stress (P < 0.05). These findings suggest that periodic mechanical stress promotes chondrocyte proliferation and matrix synthesis in part through the Src-PLCγ1-MEK1/2-ERK1/2 signaling pathway, which links these three important signaling molecules into a mitogenic cascade.
Resumo:
Current studies find that degenerated cartilage endplates (CEP) of vertebrae, with fewer diffusion areas, decrease nutrient supply and accelerate intervertebral disc degeneration. Many more apoptotic cells have been identified in degenerated than in normal endplates, and may be responsible for the degenerated grade. Previous findings suggest that inhibition of apoptosis is one possible approach to improve disc regeneration. It is postulated that inhibition of CEP cell apoptosis may be responsible for the regeneration of endplates. Caspase-3, involved in the execution phase of apoptosis, is a candidate for regulating the apoptotic process. In the present study, CEP cells were incubated in 1% fetal bovine serum. Activated caspases were detected to identify the apoptotic pathway, and apoptosis was quantified by flow cytometry. Lentiviral caspase-3 short hairpin RNA (shRNA) was employed to study its protective effects against serum deprivation. Silencing of caspase-3 expression was quantified by reverse transcription-polymerase chain reaction and Western blots, and inhibition of apoptosis was quantified by flow cytometry. Serum deprivation increased apoptosis of rat CEP cells through activation of a caspase cascade. Lentiviral caspase-3 shRNA was successfully transduced into CEP cells, and specifically silenced endogenous caspase-3 expression. Surviving cells were protected by the downregulation of caspase-3 expression and activation. Thus, lentiviral caspase-3 shRNA-mediated RNAi successfully silenced endogenous caspase-3 expression, preventing inappropriate or premature apoptosis.
Resumo:
A sprained ankle is a common musculoskeletal sports injury and it is often treated by immobilization of the joint. Despite the beneficial effects of this therapeutic measure, the high prevalence of residual symptoms affects the quality of life, and remobilization of the joint can reverse this situation. The aim of this study was to analyze the effects of immobilization and remobilization on the ankle joint of Wistar rats. Eighteen male rats had their right hindlimb immobilized for 15 days, and were divided into the following groups: G1, immobilized; G2, remobilized freely for 14 days; and G3, remobilized by swimming and jumping in water for 14 days, performed on alternate days, with progression of time and a series of exercises. The contralateral limb was the control. After the experimental period, the ankle joints were processed for microscopic analysis. Histomorphometry did not show any significant differences between the control and immobilized/remobilized groups and members, in terms of number of chondrocytes and thickness of the articular cartilage of the tibia and talus. Morphological analysis of animals from G1 showed significant degenerative lesions in the talus, such as exposure of the subchondral bone, flocculation, and cracks between the anterior and mid-regions of the articular cartilage and the synovial membrane. Remobilization by therapeutic exercise in water led to recovery in the articular cartilage and synovial membrane of the ankle joint when compared with free remobilization, and it was shown to be an effective therapeutic measure in the recovery of the ankle joint.