183 resultados para ALUMINA CATALYST

em Scielo Saúde Pública - SP


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Palladium catalysts supported on alumina and zirconia were prepared by the impregnation method and calcined at 600 and 1000 ºC. Catalysts were characterized by BET measurements, XRD, XPS, O2-TPD and tested in methane combustion through temperature programmed surface reaction. Alumina supported catalysts were slightly more active than zirconia supported catalysts, but after initial heat treatment at 1000 ºC, zirconia supported palladium catalyst showed better performance above 500 ºC A pattern between temperature interval stability of PdOx species and activity was observed, where better PdOx stability was associated with more active catalysts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low-cost tungsten monometallic catalysts containing variable amounts of metal (4.5, 7.1 and 8.5%W) were prepared by impregnating alumina with ammonium metatungstate as an inexpensive precursor. The catalysts were characterized using ICP, XPS, XRD, TPR and hydrogen chemisorption. These techniques revealed mainly WO3-Al2O3 (W6+) species on the surface. The effects of the content of W nanoparticles and reaction temperature on activity and selectivity for the partial hydrogenation of 3-hexyne, a non-terminal alkyne, were assessed under moderate conditions of temperature and pressure. The monometallic catalysts prepared were found to be active and stereoselective for the production of (Z )-3-hexene, had the following order: 7.1WN/A > 8.5 WN/A ≥ 4.5 WN/A. Additionally, the performance of the synthesized xWN/A catalysts exhibited high sensitivity to temperature variation. In all cases, the maximum 3-hexyne total conversion and selectivity was achieved at 323 K. The performance of the catalysts was considered to be a consequence of two phenomena: a) the electronic effects, related to the high charge of W (+6), causing an intensive dipole moment in the hydrogen molecule (van der Waals forces) and leading to heterolytic bond rupture; the H+ and H- species generated approach a 3-hexyne adsorbate molecule and cause heterolytic rupture of the C≡C bond into C- = C+; and b) steric effects related to the high concentration of WO3 on 8.5WN/A that block the Al2O3 support. Catalyst deactivation was detected, starting at about 50 min of reaction time. Electrodeficient W6+ species are responsible for the formation of green oil at the surface level, blocking pores and active sites of the catalyst, particularly at low reaction temperatures (293 and 303 K). The resulting best catalyst, 7.1WN/A, has low fabrication cost and high selectivity for (Z )-3-hexene (94%) at 323 K. This selectivity is comparable to that of the classical and more expensive industrial Lindlar catalyst (5 wt% Pd). The alumina supported tungsten catalysts are low-cost potential replacements for the Lindlar industrial catalyst. These catalysts could also be used for preparing bimetallic W-Pd catalysts for selective hydrogenation of terminal and non-terminal alkynes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alumina supported niobium oxide was prepared by chemical vapor deposition (CVD) of NbCl5. The alumina was calcined and pretreated at differents temperatures in order to vary the density of OH groups on the surface which was determined by thermogravimetric analysis. A good correlation was found between the amount of anchored niobium and the total number of anionic sites (oxide and hydroxyl groups) on the surface of the alumina. The infrared spectra on the OH stretching region indicate that OH groups coordinated to at least one tetrahedral aluminum were more reactive towards NbCl5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Enamel suspensions were characterized according to their rheological behavior. The suspensions presented a pseudoplastic behavior, yield stress and thixotropy, with or without the presence of deffloculant. Added carboxymethylcellulose increases the apparent viscosity of enamel suspensions and interacts complexly with the deffloculant, here sodium silicate. Addition of crystalline particles of two types of alumina, used to improve the wear resistance of ceramic glazes, also change strongly the rheological behavior of the suspensions. Added high specific area, irregular alumina particles produce a higher increase of the apparent viscosity of enamel suspensions compared to rounded ones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic combustion of methane on alumina supported palladium catalysts was studied. It has been reported that the activity of the catalyst increases with its time on line, despite of an increase of the palladium particle size. However, different preparation, pretreatment and testing conditions can be the reason for the observed different results. An experimental design, which allows to verify the influence of several parameters at the same time with a good statistical quality, was used. A Plackett-Burman design was selected for the screening of the variables which have an effect on the increase of the catalyst activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today satellites propulsion is based on the use of monopropellant and/or bipropellant chemical systems. The maneuvering of satellite is based on the hydrazine decomposition micropropulsors catalyzed by metallic iridium supported on g-alumina. This reaction is a surface reaction and is strongly exothermic and implies that the operation of the micropropulsor is controlled by the mass and heat diffusions. For this reason and for the fact that the propulsor operation is frequently in pulsed regime, the catalyst should support high pressure and temperature variations within a short time period. The performance and the durability of the commercial catalyst are jeopardized by the low thermal conductivity of the alumina. The low thermal conductivity of the alumina support restricts the heat diffusion and leads to the formation of hot spots on the catalyst surface causing the metal sintering and/or fractures of the support, resulting in loss of the activity and catalyst destruction. This work presents the synthesis and characterization of new carbon composite support for the active element iridium, in substitution of the commercial catalysts alumina based support. These supports are constituted of carbon nanofibers (30 to 40 nm diameter) supported on a macroscopic carbon felt. These materials present high thermal conductivity and mechanical resistance, as well as the easiness to be shaped with different macroscopic shapes. The mechanical stability and the performance of the iridium supported on the carbon composite support, evaluated in a laboratory scale test in hydrazine decomposition reaction, are superior compared to the commercial catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, aqueous suspensions of aluminas with different particle sizes were evaluated. The effect of pH on the electrosteric stabilization using PMAA-NH4 (ammonium polymethacrylate) as deflocculant was studied. The amount of deflocculant was optimized and rheologic properties were determined at four different pH values. Sedimentation was also evaluated. For suspensions with pH 4, an electrostatic mechanism of stabilization was observed, probably due to a flat adsorption of PMMA- on the alumina surface, leading to a small efficiency in relation to steric stabilization. For a suspension with pH 12, the steric mechanism of stabilization prevails. Suspensions with pH 7 and 9 present a higher flocculation degree. In relation to particle size, A-1000 samples present a smaller particle size, leading to a smaller interparticle distance (IPS), making stabilization more difficult.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reduction kinetics of a CuO/ZnO/Al2O3 catalyst by hydrogen was investigated isothermally and by temperature programmed reduction (TPR). Two reducible Cu2+ species were detected; the first one was identified as CuO bulk and the other as Cu2+ strongly interacting with alumina, possibly in the form of copper aluminate. The activation energies for the reduction of these two species were 60 and 90 kJ mol-1, respectively, and the reaction order with respect to hydrogen was one. The isothermal reduction data showed that the isotropic growth model is the most appropriate to describe the reaction rate data for both Cu2+ species.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and sensitive on-line flow injection system for determination of zinc with FAAS has been described. The method is based on the separation and preconcentration of zinc on a microcolumn of immobilized Alizarin Red S on alumina. The adsorbed analyte is then eluted with 250 µL of nitric acid (1 mol L-1) and is transported to flame atomic absorption spectrometer for quantification. The effect of pH, sample and eluent flow rates and presence of various cations and anions on the retention of zinc was investigated. The sorption of zinc was quantitative in the pH range of 5.5-8.5. For a sample volume of 25 mL an enrichment factor of 144 and a detection limit (3S) of 0.2 µg L-1 was obtained. The precision (RSD, n=7) was 3.0% at the 20 µg L-1 level. The developed system was successfully applied to the determination of zinc in water samples, hair, urine and saliva.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semi-hydrogenation of alkynes has industrial and academic relevance on a large scale. To increase the activity, selectivity and lifetime of monometallic catalysts, the development of bimetallic catalysts has been investigated. 1-Heptyne hydrogenation over low-loaded Pd and Ni monometallic and PdNi bimetallic catalysts was studied in liquid phase at mild conditions. XPS results suggest that nickel addition to Pd modifies the electronic state of palladium as nickel loading is increased. Low-loaded Pd catalysts showed the highest selectivities (> 95%). The most active prepared catalyst, PdNi(1%), was more selective than the Lindlar catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In esterification of oleic acid with methanol at 25 °C HPA displayed the highest activity. Moreover the HPA could be reused after being transformed into its cesium salt. In the reaction of etherification of glycerol HPA and Amberlyst 35W showed similar initial activity levels. The results of acid properties demonstrate that HPA is a strong protonic acid and that both surface and bulk protons contribute to the acidity. Because of its strong affinity for polar compounds, HPA is also seemingly dissolved in both oleic acid and methanol. The reaction in this case proceeds with the catalyst in the homogenous phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In situ ethylene polymerizations were performed using bis(cyclopentadiene)titanium dichloride supported on polyethersulfone as catalyst. The bis(cyclopentadiene)titanium dichloride supported on polyethersulfone catalyst activity estimated by ethylene polymerization was 360 kgPE/molTi/h. During polymerization the fillers used were montmorillionite nanoclays having surface modifications with 35-45 wt% dimethyl dialkyl(14-18)amine (FA) and 25-30 wt% trimethyl stearyl ammonium (FB). These fillers were pretreated with methylaluminoxine (MAO; cocatalyst) for better dispersion onto the polymer matrix. The formation of polyethylene within the whole matrix was confirmed by FTIR studies. It was found that the nature of nanofiller did not have any remarkable effect on the melting characteristics of the polymer. TGA study indicates that nanoclay FB filled polyethylene has higher thermal stability than nanoclay FA filled polyethylene. The melting temperature of the obtained polyethylenes was 142 ºC, which corresponds to that synthesized by the polyether sulfone supported catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ce-promoted Ni-catalysts from hydrotalcites were obtained. The effect of calcination temperature on the chemical and physical properties of the catalysts was studied. Several techniques were used to determine the chemical and physical characteristics of oxides. The apparent activation energies of reduction were determined. Catalytic experiments at 48 L g-1h-1 without pre-reduction in CO2 reforming of methane were performed. The spinel-like phase in these oxides was only formed at 1000 ºC. The reduction of Ni2+ in the oxides was clearly affected by the calcination temperature which was correlated with catalytic performance. The catalyst calcined at 700 ºC showed the greatest activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple and fast approach for solid phase extraction is herein described, and used to determine trace amounts of Pb2+ and Cu2+ metal ions. The solid phase support is sodium dodecyl sulfate (SDS)-coated γ-alumina modified with bis(2-hydroxy acetophenone)-1,6-hexanediimine (BHAH) ligand. The adsorbed ions were stripped from the solid phase by 6 mL of 4 M nitric acid as eluent. The eluting solution was analyzed by flame atomic absorption spectrometry (FAAS). The sorption recovery of metal ions was investigated with regard to the effects of pH, amount of ligand, γ-alumina and surfactant and the amount and type of eluent. Complexation of BHAH with Pb2+ or Cu2+ ions was examined via spectrophotometry using the HypSpec program. The detection limit for Cu2+ was 7.9 µg L-1 with a relative standard deviation of 1.67%, while that for Pb2+ was 6.4 µg L-1 with a relative standard deviation of 1.64%. A preconcentration factor of 100 was achieved for these ions. The method was successfully applied to determine analyte concentrations in samples of liver, parsley, cabbage, and water.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the influence of mechanical activation by intensive ball milling of a stoichiometric mixture of talc, kaolin, and alumina on the mechanism and kinetics of cordierite (2MgO·2Al2O3·5SiO2) formation was evaluated. The raw materials were characterized by chemical analysis, X-ray diffraction (XRD), laser diffraction, and helium pycnometry. The kinetics and mechanism of cordierite formation were studied by XRD, differential thermal analysis, and dilatometry in order to describe the phase formation as a function of temperature (1000-1400 ºC), time of thermochemical treatment (0-4 h), and grinding time of the mixture (0-45 min). Finally, the optimal conditions of the thermochemical treatment that ensured the formation of cordierite were determined: milling time of 45 min and thermal treatment at 1280 ºC for 1 h.