48 resultados para 3d Transition Metals
em Scielo Saúde Pública - SP
Resumo:
Solid-state MBz compounds, where M stands for bivalent Mn, Fe, Co, Ni, Cu and Zn and Bz is benzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The procedure used in the preparation of the compounds via reaction of basic carbonates with benzoic acid is not efficient in eliminating excess acid. However the TG-DTA curves permitted to verify that the binary compounds can be obtained by thermosynthesis, because the benzoic acid can be eliminated before the thermal decomposition of these compounds. The results led to information about the composition, dehydration, thermal stability, thermal decomposition and structure of the isolated compounds. On heating, these compounds decompose in two (Mn, Co, Ni, Zn) or three (Fe, Cu) steps with formation of the respective oxide (Mn3O4, Fe2O3, Co3O4, NiO, CuO and ZnO) as final residue. The theoretical and experimental spectroscopic studies suggest a covalent bidentate bond between ligand and metallic center.
Resumo:
Solid-state M-3-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 3-MeO-Bz is 3-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry and differential thermal analysis (TG-DTA), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy, and chemical analysis were used to characterize and to study the thermal behaviour of these compounds. The results led to information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Solid-state M-2-MeO-Bz compounds, where M stands for bivalent Mn, Co, Ni, Cu and Zn and 2-MeO-Bz is 2-methoxybenzoate, have been synthesized. Simultaneous thermogravimetry-differential thermal analysis (TG-DTA), thermogravimetry, derivative thermogravimetry (TG/DTG), differential scanning calorimetry (DSC), X-ray powder diffractometry, infrared spectroscopy and complexometry were used to characterize and to study the thermal behaviour of these compounds. The results led to have information about the composition, dehydration, thermal stability and thermal decomposition of the isolated compounds.
Resumo:
Ni(II)-Fe(II)-Fe(III) layered double hydroxides (LDH) or Ni-containing sulfate green rust (GR2) samples were prepared from Ni(II), Fe(II) and Fe(III) sulfate salts and analyzed with X ray diffraction. Nickel is readily incorporated in the GR2 structure and forms a solid solution between GR2 and a Ni(II)-Fe(III) LDH. There is a correlation between the unit cell a-value and the fraction of Ni(II) incorporated into the Ni(II)-GR2 structure. Since there is strong evidence that the divalent/trivalent cation ratio in GR2 is fixed at 2, it is possible in principle to determine the extent of divalent cation substitution for Fe(II) in GR2 from the unit cell a-value. Oxidation forms a mixture of minerals but the LDH structure is retained if at least 20 % of the divalent cations in the initial solution are Ni(II). It appears that Ni(II) is incorporated in a stable LDH structure. This may be important for two reasons, first for understanding the formation of LDHs, which are anion exchangers, in the natural environment. Secondly, this is important for understanding the fate of transition metals in the environment, particularly in the presence of reduced Fe compounds.
Resumo:
This article summarizes how chiral 2-oxazolines have been employed as inducers of asymmetry in many kinds of organic reactions, including the more recent examples reported in which chiral bis(oxazolines) have been complexed in situ with transition metals and utilized to induce the stereoselectivity of some reactions.
Resumo:
Macroscopic samples of fullerene nanostructures are obtained in a modified arc furnace using the electric arc method with a Helium atmosphere at low pressures. High purity graphite rods are used as electrodes but, when drilled and the orifices filled with powders of transition metals (Fe, Co, Ni) acting as catalysts, the resulting particles are carbon nanostructures of the fullerene family, known as Single Wall Nanotubes (SWNTs). They have typical diameters of 1.4 nm, lengths up to tenths of microns and they are arranged together in bundles containing several SWNTs. Those samples are observed and analyzed using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) techniques.
Resumo:
A solid phase extraction procedure using Amberlite XAD-1180/Pyrocatechol violet (PV) chelating resin for the determination of iron and lead ions in various environmental samples was established. The procedure is based on the sorption of lead(II) and iron(III) ions onto the resin at pH 9, followed by elution with 1 mol/L HNO3 and determination by flame atomic absorption spectrometry. The influence of alkaline, earth alkaline and some transition metals, as interferents, are discussed. The recoveries for the spiked analytes were greater than 95%. The detection limits for lead and iron by FAAS were 0.37 µg/L and 0.20 µg/L, respectively. Validation of the method described here was performed by using three certified reference materials (SRM 1515 Apple Leaves, SRM 2711 Montana Soil and NRCC-SLRS-4 Riverine Water). The procedure was successfully applied to natural waters and human hair.
Resumo:
The main methodologies in the asymmetric cyclopropanation of alkenes with emphasis on asymmetric catalysis are covered. Exemples are the Simmons-Smith reaction, the use of diazoalkanes and reactions carried out by decomposition of alpha-diazoesters in the presence of transition metals.
Resumo:
Although several chemical elements were not known by end of the 18th century, Mendeleyev came up with an astonishing achievement: the periodic table of elements. He was not only able to predict the existence of (then) new elements but also to provide accurate estimates of their chemical and physical properties. This is certainly a relevant example of the human intelligence. Here, we intend to shed some light on the following question: Can an artificial intelligence system yield a classification of the elements that resembles, in some sense, the periodic table? To achieve our goal, we have fed a self-organized map (SOM) with information available at Mendeleyev's time. Our results show that similar elements tend to form individual clusters. Thus, SOM generates clusters of halogens, alkaline metals and transition metals that show a similarity with the periodic table of elements.
Resumo:
This review aims at to the presentation and discussion of the principal aspects of the C-H activation by transition metals. Representative examples were selected from the recent literature to illustrate these principles beginning with somewhat simple examples and moving up to more complex ones. The synthetic potential of the C-H activation, as well as the potential advantages and disadvantages of the methodology are highlighted with relevant recent examples, along with brief insights on the mechanism aspects of these reactions.
Resumo:
This paper compares the catalytic activities of some transition metal ions (Fe3+, Co2+, Cu2+, Ni2+, Zn2+) in the H2O2 decomposition in homogenous and heterogeneous processes, including solid mixed systems (Fe-Cu-Co/Al2O3, Fe-Cu/Al2O3, Fe-Co/Al2O3 and Co-Cu/Al2O3). The solids were characterised by X-ray diffraction to explore evolution of phases or possible changes. Different trends of the catalytic activity were observed: in homogeneous medium the most active species was Fe3+, whereas in heterogeneous one the higher activities were shown for Co/Al2O3 and Co-Cu/Al2O3. A strong cooperative effect for the Co-Cu/Al2O3 system was observed, which can be considered as a new catalyst of interest for this type of reactions.
Resumo:
Numerous functional biomolecules are associated with metals, i.e. the metallobiomolecules; more specifically, some are dependent on transition metals required for several crucial biological roles. Nevertheless, their names can lead to ambiguous interpretations concerning the properties and performances of this group of biological molecules. Their etymology may be useful by providing a more perceptive insight into their features. However, etymology can lead to incongruous conclusions, requiring an especially careful approach to prevent errors. Examples illustrating these subjects shall be examined.
Resumo:
In the past few years, photoredox catalysis has become a powerful tool in the field of organic synthesis. Using this efficient method, it is possible to excite organic compounds from visible light and attain alternative mechanistic pathways for the formation of chemical bonds, a result which is not obtainable by classical methods. The rapid growth of work in the area of photoredox catalysis is due to its low cost, broad chemical utility protocols, and, especially, its relevancy from the green and sustainable chemistry viewpoints. Thus, this study proposes a brief theoretical discussion of and highlights recent advances in visible-light-induced photoredox catalysis through the analysis of catalytic cycles and intermediates.
Resumo:
Physico-chemical properties of 3-chloro-2-nitrobenzoates of Co(II), Ni(II) and Cu(II) were synthesized and studied. The complexes were obtained as mono- and dihydrates with a metal ion to ligand ratio of 1 : 2. All analysed 3-chloro-2-nitrobenzoates are polycrystalline compounds with colours depending on the central ions: pink for Co(II), green for Ni(II) and blue for Cu(II) complexes. Their thermal decomposition was studied in the range of 293 523 K, because it was found that on heating in air above 523 K 3-chloro-2-nitrobenzoates decompose explosively. Hydrated complexes lose crystallization water molecules in one step and anhydrous compounds are formed. The final products of their decomposition are the oxides of the respective transition metals. From the results it appears that during dehydration process no transformation of nitro group to nitrite takes place. The solubilities of analysed complexes in water at 293 K are of the order of 10-4 10-2 mol / dm³. The magnetic moment values of Co2+, Ni2+ and Cu2+ ions in 3-chloro-2-nitrobenzoates experimentally determined at 76 303 K change from 3.67µB to 4.61µB for Co(II) complex, from 2.15µB to 2.87µB for Ni(II) 3-chloro-2-nitrobenzoate and from 0.26µB to 1.39µB for Cu(II) complex. 3-Chloro-2-nitrobenzoates of Co(II) and Ni(II) follow the Curie-Weiss law. Complex of Cu(II) forms dimer.
Lanthanum based high surface area perovskite-type oxide and application in CO and propane combustion
Resumo:
The perovskite-type oxides using transition metals present a promising potential as catalysts in total oxidation reaction. The present work investigates the effect of synthesis by oxidant co-precipitation on the catalytic activity of perovskite-type oxides LaBO3 (B= Co, Ni, Mn) in total oxidation of propane and CO. The perovskite-type oxides were characterized by means of X-ray diffraction, nitrogen adsorption (BET method), thermo gravimetric and differential thermal analysis (ATG-DTA) and X-ray photoelectron spectroscopy (XPS). Through a method involving the oxidant co-precipitation it's possible to obtain catalysts with different BET surface areas, of 33-44 m²/g, according the salts of metal used. The characterization results proved that catalysts have a perovskite phase as well as lanthanum oxide, except LaMnO3, that presents a cationic vacancies and generation for known oxygen excess. The results of catalytic test showed that all oxides have a specific catalytic activity for total oxidation of CO and propane even though the temperatures for total conversion change for each transition metal and substance to be oxidized.