53 resultados para 3-Amino-1-propanol
em Scielo Saúde Pública - SP
Resumo:
Static electric dipole polarizabilities and first hyperpolarizabilites have been calculated for the title molecules and their 3' and 4'-nitro derivatives at ab-initio Hartree- Fock/6-31G(d, p) level. The influence of the pivotal p vacant 3A elements (B, Al or Ga) substitution on the electrical properties of these molecules is detailed. The axial vector components of the first hyperpolarizabilities β(0) of the push-pull 4'-nitro derivatives, -18.2×10-32 esu (B), -21.1×10-32 esu (Al) and -20.8×10-32 esu (Ga) are calculated to be as much as fourfold larger then that calculated for the p-nitroaniline, a reference organic molecule for comparison for this type of molecular property.
Resumo:
Um inquérito sorológico feito em gado bovino proveniente de 19 Municípios do Estado de São Paulo, mostrou que 36,71% dos animais observados tinham anticorpos inibidores da hemaglutinação para o vírus parainfluenza 3 (HA-1), resultado que sugere a disseminação da infecção por êste vírus no grupo de animais estudados, mesmo levando em consideração que a cêpa utilizada, como antígeno, era uma cêpa heteróloga.
Resumo:
A series of ring substituted 3-phenyl-1-(1,4-di-N-oxide quinoxalin-2-yl)-2-propen-1-one derivatives were synthesized and tested for in vitro leishmanicidal activity against amastigotes of Leishmania amazonensis in axenical cultures and murine infected macrophages. Structure-activity relationships demonstrated the importance of a radical methoxy at position R3', R4' and R5'. (2E)-3-(3,4,5-trimethoxy-phenyl)-1-(3,6,7-trimethyl-1,4-dioxy-quinoxalin-2-yl)-propenone was the most active. Cytotoxicity on macrophages revealed that this product was almost six times more active than toxic.
Resumo:
The [3+4] cycloaddition between furan and the oxyallyl cation generated from 1-bromo-1-phenylpropan-2-one (4), resulted in the formation of 2-phenyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (5) in 30% yield. This compound was further converted into 2-phenyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]oct-2-ene (13) in 35.4% yield. The selective effect of compound (13) and its isomer 3-phenyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]oct -2-ene (1a) on the radicle growth of Sorghum bicolor L. (sorghum) and Cucumis sativus L. (cucumber) were evaluated. For both plants, compound 13 showed to be more potent than its isomer 1a.
Resumo:
The alkene 2,4-dimethyl-8-oxabicyclo[3.2.1]-oct-6-en-3-one (3) was converted to 1,3,10-trimethyl-8-oxabicyclo[5.3.0]-dec-3-ene-2,9-dione (7) and 1,3-dimethyl-8-oxabicyclo[5.3.0]-dec-3-ene-2,9-dione (8) with a 55% overall yield in both cases. Lactones (7) and (8) were converted in two steps to 1,3,4-trimethyl-13-methylene-6-oxatricyclo[8.3.0.0(3,7)]-trideca-2,5,12-trione (12) (63%) and 1,3-dimethyl-13-methylene-6-oxatricycle[8.3.0.0(3,7)]-trideca-2,5,12-trione (13) (45% from 8). The effect of lactones (7), (8), (12), (13) and the intermediates (5) and (6), at the concentration of 250 mug mL-1, on the growth of Cucumis sativus L. and Sorghum bicolor L. was evaluated. The best results were observed for lactone (13) that caused 100% inhibition on the root growth of C. sativus and lactone (12) that inhibited 90% of the root growth for S. bicolor.
Resumo:
In this paper we report the synthesis of biologically active compounds through a [3+4] cycloaddition reaction to produce the main frame structure, followed by several conventional transformations. The 1,2alpha,4alpha,5-tetramethyl-8-oxabicyclo[3.2.1]oct-6-en-3-one (11) obtained from a [3+4] cycloaddition reaction was converted into 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3-one (13) in 46% yield. This was further converted into the alcohols 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (14), 1,2alpha,4alpha,5-tetramethyl-6,7-exo-isopropylidenedioxi-8 -oxabicyclo[3.2.1]octan-3beta-ol (15), 1,2alpha,4alpha,5-tetramethyl-3-butyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (17), 1,2alpha,4alpha,5-tetramethyl-3-hexyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (18) and 1,2alpha,4alpha,5-tetramethyl-3-decyl-6,7-exo-isopropylidenedioxi-8-oxabicyclo[3.2.1]octan-3 alpha-ol (19). Dehydration of 17, 18 and 19 with thionyl chloride in pyridine resulted in the alkenes 20, 21 and 22 in ca. 82% - 89% yields from starting alcohols. The herbicidal activity of the compounds synthesized was evaluated at a concentration of 100 µg g-1. The most active compound was 21 causing 42,7% inhibition against Cucumis sativus L.
Resumo:
The [4+3] cycloaddition was utilized in order to prepare 8-oxabicyclo[3.2.1]oct-6-en-3-one (1) derivatives. The correspondent acetonide 6 was converted into several alcohols (11-16). Addition of aryllithium reagents to 6 resulted in 3-(2-fluorophenyl)-6,7-exo-isopropylidenedioxy -8-oxabicyclo[3.2.1]octan-3alpha-ol (11, 72%) and 3-(2,4-dimethoxyphenyl)-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan -3alpha-ol (16, 20%). The 3-butyl-6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (15, 56%) was obtained through a Grignard reaction. Reduction of 6 resulted in 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 beta-ol (7, 62%) and 6,7-exo-isopropylidenedioxy-8-oxabicyclo[3.2.1]octan-3 alpha-ol (8, 20%). The alcohols were treated with thionyl chloride in pyridine, and the corresponding alkenes were obtained with 31-80% yield. The effect of these compounds on the development of radicle and aerial parts of Sorghum bicolor was evaluated.
Resumo:
The ¹H NMR data set of a series of 3-aryl (1,2,4)-oxadiazol-5-carbohydrazide benzylidene derivatives synthesized in our group was analyzed using the chemometric technique of principal component analysis (PCA). Using the original ¹H NMR data PCA allowed identifying some misassignments of the proton aromatic chemical shifts. As a consequence of this multivariate analysis, nuclear Overhauser difference experiments were performed to investigate the ambiguity of other assignments of the ortho and meta aromatic hydrogens for the compound with the bromine substituent. The effect of the 1,2,4-oxadiazol group as an electron acceptor, mainly for the hydrogens 12,13, has been highlighted.
Resumo:
A reação de cicloadição [4+3] entre o furano e o cátion oxialílico, gerado in situ a partir da 2,4-dibromopentan-3-ona, forneceu o 2alfa,4alfa-dimetil-8-oxabiciclo[3.2.1]oct-6-en-3-ona (1). A oxidação catalítica do oxabiciclo 1 com tetróxido de ósmio em presença de peróxido de hidrogênio em excesso levou à formação do acetonídeo 10, a partir do qual foram obtidos os álcoois 2, 11-15, com rendimentos de 23-86%. O tratamento dos álcoois 11-13 com cloreto de tionila, em presença de piridina, resultou nos respectivos alquenos 17 (94%), 18 (89%) e 19 (80%). A atividade herbicida dos compostos foi avaliada sobre o desenvolvimento do sistema radicular de Sorghum bicolor L. e Cucumis sativus L., nas concentrações de 100 e 250 ppm.
Resumo:
Nuclear receptor subfamily 1, group I, member 3 (NR1I3) is reported to be a possible novel therapeutic target for some cancers, including lung, brain and hematopoietic tumors. Here, we characterized expression of NR1I3 in a mouse model of lung carcinogenesis induced by 4-(methylnitrosamino)-4-(3-pyridyl)-1-butanone (NNK), the most potent tobacco carcinogen. Lung tumors were collected from mice treated with NNK (400 mg/kg) and euthanized after 52 weeks. Benign and malignant lesions were formalin-fixed and paraffin-embedded for histology and immunohistochemistry, with samples snap-frozen for mRNA analysis. Immunohistochemically, we found that most macrophages and type I and II pneumocytes expressed NR1I3, whereas fibroblasts and endothelial cells were NR1I3−. Compared with benign lesions, malignant lesions had less NR1I3+ tumor cells. Gene expression analysis also showed an inverse correlation between NR1I3 mRNA expression and tumor size (P=0.0061), suggesting that bigger tumors expressed less NR1I3 transcripts, in accordance with our immunohistochemical NR1I3 tests. Our results indicate that NR1I3 expression decreased during progression of malignant lung tumors induced by NNK in mice.
Resumo:
Rate constants for the quenching of 1,3-indandione (1) triplet by olefins and by hydrogen and electron donors were obtained employing the laser flash photolysis technique in benzene solution. These rate constants ranged from 2.5x10(5) Lmol-1s-1 (for 2-propanol) to 5.9x10(9) Lmol-1s-1 (for DABCO). From the quenching rate constants by 1,3-cyclohexadiene, trans- and cis-stilbene a value between 49.3 and 52.4 kcal/mol was estimated for the energy of the triplet state of 1,3-indandione. The npi* character of this triplet state was evidenced by the quenching rate constants obtained when typical hydrogen donors were employed as quenchers. For 2-phenyl-1,3-indandione (2, R=phenyl) a fast Norrish type I reaction is operating which prevents the determination of kinetic and spectroscopic data of its triplet state.
Resumo:
The infrared (IR) spectra of the four distict conformers located on the multidimensional potential energy surface (PES) for the 3-phenyl-1,2,3-oxathiazolidine 2-oxide compound have been calculated using the semiempirical quantum-mechanical method PM3. The band spectra are reported and compared directly with the experimental spectrum. The IR intensities are shown to be much more sensitive to conformational changes than the vibrational frequencies and so, the theoretical analysis of the IR spectrum can be used as a tool for helping in the elucidation of the structure of heterocyclic compounds.
Resumo:
The 1,2,3-triazole, known since the end of 19th century, is a very widely used heterocyclic system present in many synthetic substances and commercial pharmaceutical compounds. In fact, 1,2,3-triazoles show several applications in many areas especially as medicines against many diseases like cancer, AIDS, Parkinson and Alzheimer. Nowadays there is a large variety of known methods to obtain these heterocyclic compounds comprising mainly three synthetic routes. Nevertheless, there is no article that gives an objective overview of the synthetic methods for obtaining these kinds of azoheterocycles. This paper presents a brief history of this class of compounds, and a synthetic discussion concerning the main synthetic methods for its preparation, such as cyclization through hydrazones, concerted cycloadditon [2+3] and pseudopericyclic cyclization - and some others of restricted application, but also important. Finally, this paper also provides a brief overview on pharmacological applications of some 1,2,3-triazoles.