15 resultados para 2nd-order perturbation-theory
em Scielo Saúde Pública - SP
Resumo:
On the basis of theoretical B3LYP calculations, Yáñez and co-workers (J. Chem. Theory Comput. 2012, 8, 2293) illustrated that beryllium ions are capable of significantly modulating (changing) the electronic structures of imidazole. In this computational organic chemistry study, the interaction of this β-amino acid and five model Lewis acids (BeF1+, Be2+, AlF2(1+), AlF2+, and Al3+) were investigated. Several aspects were addressed: natural bond orbitals, including second order perturbation analysis of intra-molecular charge delocalization and the natural population analysis atomic charges; molecular geometries; selected infrared stretching frequencies (C-N, C-O, and N-H), and selected ¹H-NMR chemical shifts. The data illustrate that this interaction can weaken the H-O bond and goes beyond strengthening the intra-molecular hydrogen bond (N...H-O) to cause a spontaneous transfer of the proton to the nitrogen atom in five cases generating zwitterion structures. Many new features are observed. Most importantly, the zwitterion structures include a stabilizing hydrogen bond (N-H...O) that varies in relative strength according to the Lewis acid. These findings explain the experimental observations of α-amino acids (for example: J. Am. Chem. Soc. 2001, 123, 3577) and are the first reported fundamental electronic structure characterization of β-amino acids in zwitterion form.
Resumo:
This paper is a historical companion to a previous one, in which it was studied the so-called abstract Galois theory as formulated by the Portuguese mathematician José Sebastião e Silva (see da Costa, Rodrigues (2007)). Our purpose is to present some applications of abstract Galois theory to higher-order model theory, to discuss Silva's notion of expressibility and to outline a classical Galois theory that can be obtained inside the two versions of the abstract theory, those of Mark Krasner and of Silva. Some comments are made on the universal theory of (set-theoretic) structures.
Resumo:
The aim of this study was to test whether the richness observed and the biomass per trophic group of fish assemblages vary depending on the order (1st and 2nd) of the streams located in three different basins of the Upper Paraná River Basin, Central Brazil. Samples were collected between April and September, 2009, in 27 streams of the Meia Ponte, Piracanjuba and Santa Maria River basins. A total of 4,879 specimens were collected distributed in 59 species and 19 families. The statistical analyses carried out indicate that the observed richness and biomass of omnivore fish were influenced by the interaction of two factors: stream order and basin. The 2nd order streams located in the Santa Maria basin presented significant differences in the observed richness and omnivore biomass when compared to i) 1st order streams in the same basin (only richness) or in the Piracanjuba and Meia Ponte basin; ii) 2nd order streams in the Piracanjuba (only omnivore biomass) and Meia Ponte Rivers basins. Results are discussed considering the influence of geomorphic processes on fish assemblages and food availability.
Resumo:
Statistical mechanics Monte Carlo simulation is reviewed as a formalism to study thermodynamic properties of liquids. Considering the importance of free energy changes in chemical processes, the thermodynamic perturbation theory implemented in the Monte Carlo method is discussed. The representation of molecular interaction by the Lennard-Jones and Coulomb potential functions is also discussed. Charges derived from quantum molecular electrostatic potential are also discussed as an useful methodology to generate an adequate set of partial charges to be used in liquid simulation.
Resumo:
A study was carried out on the urea geometries using ab initio calculation and Monte Carlo computational simulation of liquids. The ab initio calculated results showed that urea has a non-planar conformation in the gas phase in which the hydrogen atoms are out of the plane formed by the heavy atoms. Free energies associated to the rotation of the amino groups of urea in water were obtained using the Monte Carlo method in which the thermodynamic perturbation theory is implemented. The magnitude of the free energy obtained from this simulation did not permit us to conclude that urea is non-planar in water.
Resumo:
The role played by electron correlation and vibrational correction on the polarizability of the LiH molecule is demonstrated. We present results for the dipole moment, polarizability and first hyperpolarizability of the LiH molecule obtained through many-body perturbation-theory, coupled-cluster and quadratic configuration interaction methods. Our best result for the dipole polarizability, obtained using the QCISD(T) scheme, indicates that the vibrational contribution is appreciable, amounting to ca. 10% of the total polarizability. Regarding the first hyperpolarizability, the vibrational contribution is even more important and has opposite sign in comparison with the electronic contribution.
Resumo:
It is through the application of an electronic partition approach called Symmetry-Adapted Perturbation Theory (SAPT) that the nature of hydrogen bonds and van der Waals interactions can be unveiled according to the contribution of electrostatic, charge transfer, exchange repulsion, polarization, and dispersion terms. Among these, electrostatic partition governs the formation of the hydrogen bonds, whose energies are arguably high. However, the weakness of the interaction strength is caused by dispersion forces, whose contribution decisively lead to the stabilization of complexes formed via van der Waals interactions.
Resumo:
Along the historical background of science, the hydrogen bond became widely known as the universal interaction, thus playing a key role in many molecular processes. Through the available theoretical approaches, many of these processes can be unveiled on the basis of the molecular parameters of the subject intermolecular system, such as the variation of bond length and mainly the frequency shift observed in the proton donor. Supported by the natural bond analysis (NBO) with the quantification of the hybridization contributions, the structural deformations and vibrational effects cited above are also attributed to the outcome of the intermolecular interaction strength, which consequently can be estimated by means of the quantum theory of atoms in molecules (QTAIM) as well as evaluated by the symmetry-adapted perturbation theory (SAPT). Moreover, to identify the preferential interaction sites for proton donors and acceptors, the molecular electrostatic potential (MEP) is useful in this regard.
Resumo:
This study aimed to evaluate the effect of horizontal plate meter with oblong holes operating with one or two seed outlets at different speeds over the accuracy of longitudinal distribution of common bean seeds (Phaseolus vulgaris L.). The experiment was performed in laboratory using the meter with one and two seed outlet points in relation to ten tangential disk plate speeds (0.03 to 0.30 m s-1). It was used a complete randomized design with four replications, summing up 80 experimental treatments. Tangential speed quantitative factor was estimated through a 2nd order polynomial regression. There was no significant difference in the behavior of the seed meter operating with one or two outlets in the metering of bean seeds in all tested speeds, with percentage of single seeds spacing over 60% in tangential speeds below of 0.24 m s-1.
Resumo:
In this work the Weeks-Chandler-Andersen (WCA) perturbation theory coupled with the Enskogs solution of the Boltzmann equation for dense hard-sphere fluids is employed for estimating diffusion coefficients in compressed pure liquids and fluids and dense fluid mixtures. The effect of density correction on the estimation of diffusivities is analyzed using the Carnahan-Starling pair correlation function and the correlation of Speedy and Harris which have been proposed as models of self-diffusion coefficient of hard-sphere fluids. The approach presented here is based on the smooth hard-sphere theory without any binary adjustable parameters and can be readily used for estimating diffusivities in multicomponent fluid mixtures. It is shown that the correlated and the predicted diffusivities are in good agreement with the experimental data and much better than estimates of Wilke-Chang equation.
Resumo:
This article presents a systematic framework for modeling several classes of illness-sickness-disease named as Holopathogenesis. Holopathogenesis is defined as processes of over-determination of diseases and related conditions taken as a whole, comprising selected facets of the complex object Health. First, a conceptual background of Holopathogenesis is presented as a series of significant interfaces (biomolecular-immunological, physiopathological-clinical, epidemiological-ecosocial). Second, propositions derived from Holopathogenesis are introduced in order to allow drawing the disease-illness-sickness complex as a hierarchical network of networks. Third, a formalization of intra- and inter-level correspondences, over-determination processes, effects and links of Holopathogenesis models is proposed. Finally, the Holopathogenesis frame is evaluated as a comprehensive theoretical pathology taken as a preliminary step towards a unified theory of health-disease.
Resumo:
A theoretical study aimed to analyze the existing knowledge in the literature on the perioperative thirst symptom from the perspective of Symptom Management Theory, and supplemented with the experience of the study group and thirst research. Thirst is described as a very intense symptom occurring in the perioperative period, and for this reason it cannot be ignored. The Symptom Management Theory is adequate for understanding the thirst symptom and is a deductive theory, focused on the domains of the Person, Environment and Health / Illness Status, as well as on the dimensions of Experience, Management Strategies and Symptom Outcomes. Using the theory leads us to consider perioperative thirst in its multifactorial aspects, analyzing the interrelation of its domains and dimensions in order to draw attention to this symptom that has been insufficiently valued, recorded and treated in clinical practice.
Resumo:
Resonance energies are shown to be quasithermodynamic in character. Hence, they are generally unsuitable as bases for anticipating kinetic stabilities. Examples are provided, leading to the conclusion that those who intend the word 'aromatic' to mean chemically unreactive, need to carry out full Hückel calculations in order to rank hydrocarbons using the frontier orbital energies.
Resumo:
Organismic-centered Darwinism, in order to use direct phenotypes to measure natural selection's effect, necessitates genome's harmony and uniform coherence plus large population sizes. However, modern gene-centered Darwinism has found new interpretations to data that speak of genomic incoherence and disharmony. As a result of these two conflicting positions a conceptual crisis in Biology has arisen. My position is that the presence of small, even pocket-size, demes is instrumental in generating divergence and phenotypic crisis. Moreover, the presence of parasitic genomes as in acanthocephalan worms, which even manipulate suicidal behavior in their hosts; segregation distorters that change meiosis and Mendelian ratios; selfish genes and selfish whole chromosomes, such as the case of B-chromosomes in grasshoppers; P-elements in Drosophila; driving Y-chromosomes that manipulate sex ratios making males more frequent, as in Hamilton's X-linked drive; male strategists and outlaw genes, are eloquent examples of the presence of real conflicting genomes and of a non-uniform phenotypic coherence and genome harmony. Thus, we are proposing that overall incoherence and disharmony generate disorder but also more biodiversity and creativeness. Finally, if genes can manipulate natural selection, they can multiply mutations or undesirable characteristics and even lethal or detrimental ones, hence the accumulation of genetic loads. Outlaw genes can change what is adaptively convenient even in the direction of the trait that is away from the optimum. The optimum can be "negotiated" among the variants, not only because pleiotropic effects demand it, but also, in some cases, because selfish, outlaw, P-elements or extended phenotypic manipulation require it. With organismic Darwinism the genome in the population and in the individual was thought to act harmoniously without conflicts, and genotypes were thought to march towards greater adaptability. Modern Darwinism has a gene-centered vision in which genes, as natural selection's objects can move in dissonance in the direction which benefits their multiplication. Thus, we have greater opportunities for genomes in permanent conflict.
Resumo:
This paper aims at shedding light on an obscure point in Kant's theory of the state. It discusses whether Kant's rational theory of the state recognises the fact that certain exceptional social situations, such as the extreme poverty of some parts of the population, could request institutional state support in order to guarantee the attainment of a minimum threshold of civil independence. It has three aims: 1) to show that Kant's Doctrine of Right can offer solutions for the complex relation between economics and politics in our present time; 2) to demonstrate the claim that Kant embraces a pragmatic standpoint when he tackles the social concerns of the state, and so to refute the idea that he argues for an abstract conception of politics; and 3) to suggest that a non-paternalistic theory of rights is not necessarily incompatible with the basic tenets of a welfare state.