86 resultados para 1H and 13C nuclear magnetic resonance
em Scielo Saúde Pública - SP
Resumo:
COSY proton nuclear magnetic resonance was used to measure the exchange rates of amide protons of hen egg white lysozyme (HEWL) in the pressure-assisted cold-denatured state and in the heat-denatured state. After dissolving lysozyme in deuterium oxide buffer, labile protons exchange for deuterons in such a way that exposed protons are substituted rapidly, whereas "protected" protons within structured parts of the protein are substituted slowly. The exchange rates k obs were determined for HEWL under heat treatment (80ºC) and under high pressure conditions at low temperature (3.75 kbar, -13ºC). Moreover, the influence of co-solvents (sorbitol, urea) on the exchange rate was examined under pressure-assisted cold denaturation conditions, and the corresponding protection factors, P, were determined. The exchange kinetics upon heat treatment was found to be a two-step process with initial slow exchange followed by a fast one, showing residual protection in the slow-exchange state and P-factors in the random-coil-like range for the final temperature-denatured state. Addition of sorbitol (500 mM) led to an increase of P-factors for the pressure-assisted cold denatured state, but not for the heat-denatured state. The presence of 2 M urea resulted in a drastic decrease of the P-factors of the pressure-assisted cold denatured state. For both types of co-solvents, the effect they exert appears to be cooperative, i.e., no particular regions within the protein can be identified with significantly diverse changes of P-factors.
Resumo:
The main purpose of this work is to describe the use of the technique Site-Specific Natural Isotopic Fractionation of hydrogen (SNIF-NMR), using ²H and ¹H NMR spectroscopy, to investigate the biosynthetic origin of acetic acid in commercial samples of Brazilian vinegar. This method is based on the deuterium to hydrogen ratio at a specific position (methyl group) of acetic acid obtained by fermentation, through different biosynthetic mechanisms, which result in different isotopic ratios. We measured the isotopic ratio of vinegars obtained through C3, C4, and CAM biosynthetic mechanisms, blends of C3 and C4 (agrins) and synthetic acetic acid.
Resumo:
Spondylodiscitis represents 2%–4% of all bone infections cases. The correct diagnosis and appropriate treatment can prevent complications such as vertebral collapse and spinal cord compression, avoiding surgical procedures. The diagnosis is based on characteristic clinical and radiographic findings and confirmed by blood culture and biopsy of the disc or the vertebra. The present study was developed with Clementino Fraga Filho University Hospital patients with histopathologically and microbiologically confirmed diagnosis of spondylodiscitis, submitted to magnetic resonance imaging of the affected regions. In most cases, pyogenic spondylodiscitis affects the lumbar spine. The following findings are suggestive of the diagnosis: segmental involvement; ill-defined abscesses; early intervertebral disc involvement; homogeneous vertebral bodies and intervertebral discs involvement. Tuberculous spondylodiscitis affects preferentially the thoracic spine. Most suggestive signs include: presence of well-defined and thin-walled abscess; multisegmental, subligamentous involvement; heterogeneous involvement of vertebral bodies; and relative sparing of intervertebral discs. The present pictorial essay is aimed at showing the main magnetic resonance imaging findings of pyogenic and tuberculous discitis.
Resumo:
The phytochemical investigation of Herissantia crispa led to the isolation of seven compounds, identified as: sitosterol 3-O-β-D-glucopyranoside, stigmasterol 3-O-β-D-glucopyranoside, 3,5,7,4'-tetrahydroxyflavone (kaempferol), 3,5,7,3',4'-pentahydroxyflavone (quercetin), unpublished in the genus Herissantia, besides β-sitosterol, kaempferol 3-O-β-D-(6''-E-p-coumaroil) (tiliroside) glucopyranoside and kaempferol 3,7-di-O-α-L-ramnopyranoside (lespedin), described for the first time in the species. The structural determination of the compounds was made by means of spectroscopy methods such as Infrared Spectroscopy, ¹H and 13C Nuclear Magnetic Resonance, with the aid of two dimensional techniques, and by comparison with literature data. The toxicity activity of the MeOH extract and lespedin on Artemia salina Leach. was also carried out.
Resumo:
Cyclolignan (+)-lyoniresinol (1), veratric acid (2), vanillic acid (3), lupeol, oleanolic acid, 3β-hydroxy-urs-11-en-28,13β-lactone (4), the mixture of α- and β-amyrin, trans-polyisoprene, and β-sitosterol were isolated from the leaves of Maytenus phyllanthoides. The structures of the isolated compounds were established based on spectroscopic data, mainly ¹H and 13C nuclear magnetic resonance (NMR). Compound 1, its acetate analog 1a, and compounds 2, 3, and 4 were tested against Trichomonas vaginalis. (+)-Lyoniresinol showed activity corresponding to IC50 17.57 µM. This is the first report on the occurrence of 3β-hydroxy-urs-11-en-28,13β-lactone (4) in the Celastraceous family and lyoniresinol in the Maytenus genus, and on the antitrichomonal activity of lyoniresinol.
Resumo:
Oil-resin fractions from Copaifera reticulata Ducke (Leguminosae-Caesalpinoideae) were evaluated for larvicidal activity on third larval instars of Aedes aegypti, in searching for alternative control methods for this mosquito. The bioactive fractions were chemically monitored by thin-layer chromatography, ¹H and 13C nuclear magnetic resonance and mass spectrometry. Bioassays were performed using five repetitions, at a temperature of 28 ± 1°C, relative humidity of 80 ± 5% and light and dark cycles of 12h. Mortality was indicated by darkening of the cephalic capsule after 24h of exposure of the larvae to the solutions. The most active fractions were CRM1-4 (sesquiterpenes) and CRM5-7 (labdane diterpenes), which showed LC50 values of 0.2 and 0.8ppm, respectively.
Resumo:
Thermoanalytical behavior of sodium and potassium salts of pyrrolidinedithiocarbamate (pyr), piperidineditiocarbamate (pip), morpholinedithiocarbamate (mor), hexametileneiminedithiocarbamate (hex), were investigated. In a first step the salts were synthesized and characterized by infrared spectroscopy (FTIR), ¹H and 13C nuclear magnetic resonance (NMR) and elementar analysis. Finally, thermal analytical (TG/DTG and DSC) studies were performed in order to evaluate the thermal stability, as well as the pathways of the thermal decomposition based in the intermediate and final decomposition products.
Resumo:
During the last five decades, as a result of an interaction between natural product chemistry, synthetic organic chemistry, molecular biology and spectroscopy, scientists reached an extraordinary level of comprehension about the natural processes by which living organisms build up complex molecules. In this context, 13C nuclear magnetic resonance spectroscopy, allied with isotopic labeling, played a determinant role. Nowadays, the widespread use of modern NMR techniques allows an even more detailed picture of the biochemical steps by accurate manipulation of the atomic nuclei. This article focuses on the development of such techniques and their impact on biosynthetic studies.
Resumo:
Phosphate release kinetics from manures are of global interest because sustainable plant nutrition with phosphate will be a major concern in the future. Although information on the bioavailability and chemical composition of P present in manure used as fertilizer are important to understand its dynamics in the soil, such studies are still scarce. Therefore, P extraction was evaluated in this study by sequential chemical fractionation, desorption with anion-cation exchange resin and 31P nuclear magnetic resonance (31P-NMR) spectroscopy to assess the P forms in three different dry manure types (i.e. poultry, cattle and swine manure). All three methods showed that the P forms in poultry, cattle and swine dry manures are mostly inorganic and highly bioavailable. The estimated P pools showed that organic and recalcitrant P forms were negligible and highly dependent on the Ca:P ratio in manures. The results obtained here showed that the extraction of P with these three different methods allows a better understanding and complete characterization of the P pools present in the manures.
Resumo:
The literature carries many theories about the mechanism of action of local anesthetics (LA). We can highlight those focusing the direct effect of LA on the sodium channel protein and the ones that consider the interaction of anesthetic molecules with the lipid membrane phase. The interaction between local anesthetics and human erythrocyte membranes has been studied by ¹H and 31P nuclear magnetic resonance spectroscopy. It was found that lidocaine (LDC) and benzocaine (BZC) bind to the membranes, increase the mobility of the protons of the phospholipid's acyl chains, and decrease the mobility and/or change the structure of the polar head groups. The results indicate that lidocaine molecules are inserted across the polar and liquid interface of the membrane, establishing both electrostatic (charged form) and hydrophobic (neutral form) interactions. Benzocaine locates itself a little deeper in the bilayer, between the interfacial glycerol region and the hydrophobic core. These changes in mobility or conformation of membrane lipids could affect the Na+-channel protein insertion in the bilayer, stabilizing it in the inactivated state, thus causing anesthesia.
Resumo:
The chemical composition of the essential oil and hydrolates of Campomanesia viatoris Landrum were investigated by gas chromatography/mass spectrometry (GC/MS) and a GC flame ionization detector (GC-FID). The major constituents were tasmanone (70.50, essential oil; 74.73%, hydrolate), flavesone (12.77, essential oil; 12.24%, hydrolate) and agglomerone (6.79, essential oil; 10.84%, hydrolate). Tasmonone was isolated and its structure was characterized by spectrometric analysis, specifically 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometry (MS). These findings supports the quimiotaxonomic relationship with Campomanesia and Eucalyptus genera.
Resumo:
A crude Sohxlet extract from leaves of Syzygium jambos was sequentially fractionated using a silica gel flash column. A bioassay based on the numbers of urediniospores of Puccinia psidii that germinated in 2% water agar detected an active stimulant of germination when the fraction eluted with 100% n-hexane was used. The active fraction induced up to 88% increase in germination when added to a spore suspension in mineral oil. The active fraction was characterized as a hydrocarbon by ¹H nuclear magnetic resonance, 13C nuclear magnetic resonance, and infrared analysis. Gas chromatography-mass spectrometry analysis indicated that the fraction was a long-chain 436 MW hydrocarbon with corresponding to C31H64, namely hentriacontane. This is the first time such a compound proved to be involved with stimulation of fungal spore germination. These results may contribute to better understanding the infection process of rusts.
Resumo:
We report the use of an optical fiber sensor to measure the soybean oil concentration in samples obtained from the mixture of pure biodiesel and commercial soybean oil. The operation of the device is based on the long-period grating sensitivity to the surrounding medium refractive index, which leads to measurable modifications in the grating transmission spectrum. The proposed analysis method results in errors in the oil concentration of 0.4% and 2.6% for pure biodiesel and commercial soybean oil, respectively. Techniques of total glycerol, dynamic viscosity, density, and hydrogen nuclear magnetic resonance spectroscopy were also employed to validate the proposed method.