148 resultados para 13C NMR compilation
em Scielo Saúde Pública - SP
Resumo:
This manuscript describes an update review with up to 285 references concerning the occurrence of amides from a variety of species of the genus Piper (Piperaceae). Besides addressing occurrence, this review also describes the biological activities attributed to extracts and pure compounds, a compiled 13C NMR data set, the main correlations between structural and NMR spectroscopic data of these compounds, and employment of hyphened techniques such as LC-MS, GC-MS and NMR for analysis of amides from biological samples and crude Piper extracts.
Resumo:
The Annonaceae family is distributed throughout Neotropical regions of the world. In Brazil, it covers nearly all natural formations particularly Annona, Xylopia and Polyalthia and is characterized chemically by the production of sources of terpenoids (mainly diterpenes), alkaloids, steroids, polyphenols and, flavonoids. Studies from 13C NMR data of diterpenes related with their botanical occurrence were used to generate self-organizing maps (SOM). Results corroborate those in the literature obtained from morphological and molecular data for three genera and the model can be used to project other diterpenes. Therefore, the model produced can predict which genera are likely to contain a compound.
Resumo:
A new triterpene, 1-epi-castanopsol, besides eleven known compounds: sitosterol, stigmasterol, campesterol, lupeol, lupenone, simirane B, syringaresinol, scopoletin, isofraxidin, 6,7,8-trimethoxycoumarin and harman, were isolated from the wood of Simira glaziovii. The structures of the known compounds were defined by 1D, 2D ¹H, 13C NMR spectra data analyses and comparison with literature data. The detailed spectral data analyses allowed the definition of the structure of the new 1-epi isomer of castanopsol and performance of ¹H and 13C NMR chemical shift assignments.
Resumo:
Four goyazensolide-type sesquiterpene lactones - lychnofolide, centratherin, goyazensolide and goyazensolide acetate - were thoroughly studied by NMR experimental techniques. ¹H NMR, 13C NMR {¹H}, COSY, HMQC, HMBC, J-res. and NOE experiments were performed to provide the needed structural information. Complete and unequivocal assignment, including the determination of all multiplicities, was obtained for each structure and the data collections are presented in tables.
Resumo:
In this work, it was studied the behavior of the nonionic surfactant aqueous solutions, containing or not a hydrotropic agent, by resonance magnetic nuclear (NMR). We have studied monofunctional diblock copolymers of poly(propylene oxide-ethylene oxide) (R-PPO-PEO-OH, where R length is linear C4) as nonionic surfactant and sodium p-toluenesulfonate (NaPTS) as hydrotropic agent. The critical micelle concentration (CMC) of the aqueous copolymer solution was obtained from ¹H-NMR. The preliminary study of the interaction between the copolymer, under the unimer and micelle forms, and the hydrotrope, in aqueous solutions, was evaluated by ¹H-NMR and 13C-NMR.
Resumo:
High levels of Fe and Mn present in some soils and compost organic matter decrease the resolution of 13C NMR spectra of humic substances. Addition of KCl up to a concentration of 0,03 mol L-1 to humic substances extracts followed by centrifugation is an efficient method of eliminating clays and minerals containing high levels of paramagnetic metals such as Fe and Mn thus increasing the resolution of 13C NMR spectra.
Resumo:
During the last five decades, as a result of an interaction between natural product chemistry, synthetic organic chemistry, molecular biology and spectroscopy, scientists reached an extraordinary level of comprehension about the natural processes by which living organisms build up complex molecules. In this context, 13C nuclear magnetic resonance spectroscopy, allied with isotopic labeling, played a determinant role. Nowadays, the widespread use of modern NMR techniques allows an even more detailed picture of the biochemical steps by accurate manipulation of the atomic nuclei. This article focuses on the development of such techniques and their impact on biosynthetic studies.
Resumo:
The Steady-State Free Precession (SSFP) sequence has been widely used in low-field and low-resolution imaging NMR experiments to increase the signal-to-noise ratio (s/n) of the signals. Here, we analyzed the Scrambled Steady State - SSS and Unscrambled Steady State - USS sequences to suppress phase anomalies and sidebands of the 13C NMR spectrum acquired in the SSFP regime. The results showed that the application of the USS sequence allowed a uniform distribution of the time interval between pulses (Tp), in the established time range, allowing a greater suppression of phase anomalies and sidebands, when compared with the SSS sequence.
Resumo:
ABSTRACTEndophytic fungi are fungi that colonize internal tissues of plants. There are few studies of compounds isolated from endophytic fungi of Amazon plants. Thus, the aim this study was the isolation and structural identification of sitosterol (1), stigmasterol (2), sitostenone (3), squalene (4), ergosterol (5) and ergosterol peroxide (6) from fungus Colletotrichum gloeosporioidesisolated as endophytic from Virola michelli, a typical Amazon plant, used in folk medicine against skin infection. Compounds were isolated by chromatography column on silica and identified by 1H and 13C NMR and MS. The presence of phytosterols in fungi is rare and this is the first report of the isolation of the phytosterols sitosterol, stigmasterol and sitostenone from the genus Colletotrichum.
Resumo:
The contribution of humic substances of different composts to the synthesis of humin in a tropical soil was evaluated. Increasing doses (0, 13, 26, 52, and 104 Mg ha-1) of five different composts consisting of agroinpowderrial residues were applied to a Red-Yellow Latosol. These composts were chemically characterized and 13C NMR determined and the quantity of the functional alkyl groups of humic acids applied to the soil as compost was estimated. Thirty days after application of the treatments, organic matter samples were collected for fractionation of humic acids (HA), fulvic acids (FA) and humin (HU), from which the ratios HA/FA and (HA + FA)/HU were calculated. The application of the composts based on castor cake resulted in the highest HU levels in the soil; alkyl groups of the HA fraction of the composts were predominant in the organic components added to the HU soil fraction.
Resumo:
Humic substances are the major components of soil organic matter. Among the three humic substance components (humic acid, fulvic acid, and humin), humin is the most insoluble in aqueous solution at any pH value and, in turn, the least understood. Humin has poor solubility mainly because it is tightly bonded to inorganic soil colloids. By breaking the linkage between humin and inorganic soil colloids using inorganic or organic solvents, bulk humin can be partially soluble in alkali, enabling a better understanding of the structure and properties of humin. However, the structural relationship between bulk humin and its alkaline-soluble (AS) and alkaline-insoluble (AIS) fractions is still unknown. In this study, we isolated bulk humin from two soils of Northeast China by exhaustive extraction (25 to 28 times) with 0.1 mol L-1 NaOH + 0.1 mol L-1 Na4P2O7, followed by the traditional treatment with 10 % HF-HCl. The isolated bulk humin was then fractionated into AS-humin and AIS-humin by exhaustive extraction (12 to 15 times) with 0.1 mol L-1 NaOH. Elemental analysis and solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (13C CPMAS NMR) spectroscopy were used to characterize and compare the chemical structures of bulk humin and its corresponding fractions. The results showed that, regardless of soil types, bulk humin was the most aliphatic and most hydrophobic, AS-humin was the least aliphatic, and AIS-humin was the least alkylated among the three humic components. The results showed that bulk humin and its corresponding AS-humin and AIS-humin fractions are structurally differed from one another, implying that the functions of these humic components in the soil environment differed.
Resumo:
ABSTRACT Increasing attention has been given, over the past decades, to the production of exopolysaccharides (EPS) from rhizobia, due to their various biotechnological applications. Overall characterization of biopolymers involves evaluation of their chemical, physical, and biological properties; this evaluation is a key factor in understanding their behavior in different environments, which enables researchers to foresee their potential applications. Our focus was to study the EPS produced by Mesorhizobium huakuii LMG14107, M. loti LMG6125, M. plurifarium LMG11892,Rhizobium giardini bv. giardiniH152T, R. mongolense LMG19141, andSinorhizobium (= Ensifer)kostiense LMG19227 in a RDM medium with glycerol as a carbon source. These biopolymers were isolated and characterized by reversed-phase high-performance liquid chromatography (RP-HPLC), Fourier transform infrared (FTIR), and nuclear magnetic resonance (NMR) spectroscopies. Maximum exopolysaccharide production was 3.10, 2.72, and 2.50 g L-1for the strains LMG6125, LMG19227, and LMG19141, respectively. The purified EPS revealed prominent functional reactive groups, such as hydroxyl and carboxylic, which correspond to a typical heteropolysaccharide. The EPS are composed primarily of galactose and glucose. Minor components found were rhamnose, glucuronic acid, and galacturonic acid. Indeed, from the results of techniques applied in this study, it can be noted that the EPS are species-specific heteropolysaccharide polymers composed of common sugars that are substituted by non-carbohydrate moieties. In addition, analysis of these results indicates that rhizobial EPS can be classified into five groups based on ester type, as determined from the 13C NMR spectra. Knowledge of the EPS composition now facilitates further investigations relating polysaccharide structure and dynamics to rheological properties.
Resumo:
Pimaradienes, including isopimaradienes, with an endocyclic double bond between C-9 and C-11 are uncommon compounds in nature. The diterpenoid pimar-9(11),15-dien-19-oic acid (1) was isolated from Mikania triangularis (Asteraceae) and the correct stereochemistry of 1was established by ¹H and 13C NMR studies of several oxidative products, mainly epoxides, of this compound and its double bond isomers.
Resumo:
The synthesis of two new spirostanic analogs of the natural occurring brassinosteroid 6-desoxocastasterone (1) is described. The scheme consists in the formation and elimination of tigogenin mesylate followed by catalytic dihydroxylation of the resulting D2-steroid (3) and acetylation of the 2a, 3a-diol introduced.Treatment diacetate (5) with NaNO2/BF3.Et2O and chromatography in alumina led to a 23-keto (6) which on reduction produced the 23S alcohol (8) as major product. Saponification of the 2a, 3a-diacetoxy-23-keto compound (6) and the 2a,3a-diacetoxy-23-hydroxy compound (8) led to the spirobrasinosteroids (7) and (9).13C NMR and ¹H RMN characteristics derived from substitution at C23 are briefly discussed.
Resumo:
This study has shown that Eucalyptus tar and creosote can be used in phenolic adhesive formulations (resols) for wood products bonding. Some adhesives were prepared substituting 0; 17.7; 35.0 and 67.0% of the phenol by anhydrous tar and 0; 15.0 e 28.5% by creosote. In gluing Brazilian pine veneers, eucalypt tar and creosote based adhesives required longer pressing times for curing than conventional phenol-formaldehyde adhesives. By using 13C NMR, the number of carbons in side chains and hydroxyl, carbonyl, carboxyl and methoxyl groups related to 100 aromatic rings could be estimated in tar and creosote. In creosote, after reaction with excess formaldehyde in alkaline medium, only 0,28 hydroxymethyl groups was detected per phenolic ring. This low amount of hydroxymethylation explains the lack of reactivity in curing observed when creosote was introduced in a standard adhesive formulation.