144 resultados para sulfur fertilization


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with a field trial executed to compare cotton seed and cacau meals in the fertilization of sugar cane, variety Co290. The design chosen was a latin square of 6 x 6. The following conclusions can be drawn: 1. Cottonseed meal revealed to be statistically superior to cacau meal, being even superior to the mineral fertilizers plus cacau meal treatment. 2. From an economical point of view cotton seed meal, as a fertilizer for sugar cane, can not be substituted by cacau meal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the results of a pot and plot experiment which was carried out to determine the influence of sulphur and boron and the effect seed inoculation with Rhizobium meliloti in the yield of alfafa. Sulphur was applied as flower of sulphur at the rates of 1,000 and 2,000 kg por hectare; boron was employed in the proportion of 15 kg of borax per hectare; both sulphur and boron were distributed broadcast before planting; the experimental design chosen for the field trial was a latin square of 6 x 6 with the following treatments: Number Treatment 1 Control 2 One dosis S + inoculation 3 Two dosis S +inoculation 4 One dosis S + B + inoculation 5 B + inoculation 6 inoculation The crop supplied four cuttings in an eleven months period. The pot experiment nearly confirmed the plot one. The following conclusions can be drawn: 1. The classification of treatments in a decrescent order was: l.o - two doses S + inoculation; 2.o - one dosis S +inoculation, S + B + inoculation, and B + inoculation (these treatmente were not statistically different); 3.o - control; 4.o - inoculation; 2 The vield due to the treatment two dosis S + inoculation was 22 per cent higher than the control one, a fact that suggests that the S supply in the soil studied ("terra roxa misturada") is not sufficient for the total requirements of alfafa; 3. From an economical point of view the best treatment was: one dosis B + inoculation which permits a net gain of Cr$ 12.527,30 per hectare per year; 4. Based on the mentioned results we recommend in soils of same type the following fertilization for alfafa. 5 tons limestone/hectare 300 kg serranafosfato and 600 kg hiperfosfato/ha 300 kg muriate of potash/ha 15 kg borax/ha and a medium organic manuring if the soil is very poor in organic matter.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals with the preliminary results of a sand culture experiment carried out to obtain physiological bases to study the fertilization of cassava in the State of São Paulo. On the other hand, the authors are interested in the possible influence of mineral nutrients in the quantity and quality of starch. Cassava (Manihot utilissima Pohl.), "Branca de Sta. Catarina" variety, was grown under the following treatments: NO PO KO, NO P1 K1, N1 P0 Kl, NI P1K0, N2 p1 Kl N1 P2 K1 and N1 P1 K2. A striking response to phosphorus was observed among the treatments. However, once secured the necessary phosphoric level to the plant, the production becomes limited by nitrogen; in other words, increase in yield can be accomplished only by raising the nitrogenous level. The present results suggest that the remarkable effects of phosphates applied to cassava cultures in the State of São Paulo are due not only to the poor quality of our soils, as far phosphorus is concerned: we are facing a positive physiological response showed by the plant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. The present work was carried out to study the effects of mineral nutrients in the yield as well as in the composition of cassava roots. The variety "Branca de Sta. Catarina" was grown by the sand culture method, the following treatments being used: N0 P0 K0, N0 P1 Kl, N1 P0 K1, N2 P1 K0, N2 P1 K1, N1 P2 K1, and N1 P1 K2, where the figures 0, 1, and 2 denote the relative proportion of a given element. The nutrients were given as follows: N = 35 grams of ammonium nitrate per pot loaded with 120 pounds of washed sand; P1 = 35 grams of monocalcium phosphate; Kl = 28 grams of sulfate of potash. Besides those fertilizers, each pot received 26 grams of magnesium sulfate and weekly doses of micronutrients as indicated by HOAGLAND and ARNON (1939). To apply the macronutrients the total doses were divided in three parts evenly distributed during the life cycle of cassava. 2. As far yield of roots and foliage are concerned, there are a few points to be considered: 2.1. the most striking effect on yield was verified when P was omitted from the fertilization; this treatment gave the poorest yields of the whole experiment; the need of that element for the phosphorylation of the starchy reserves explains such result; 2.2. phosphorus and nitrogen, under the experimental conditions, showed to be the most important nutrients for cassava; the effect of potassium in the weight of the roots produced was much less marked; it is noteworthy to mention, that in absence of potassium, the roots yield decreased whereas the foliage increased; as potassium is essential for the translocation of carbohydrates it is reasonable to admit that sugars produced in the leaves instead of going down and accumulate as starch in the roots were consumed in the production of more green matter. 3. Chemical analyses of roots revealed the following interesting points: 3.1. the lack of phosphorus brought about the most drastic reduction in the starch content of the roots; while the treatment N1 P1 K1 gave 32 per cent of starch, with NI PO Kl the amount found was 25 per cent; this result can be explained by the requirement of P for the enzymatic synthesis of starch; it has to be mentioned that the decrease in the starch content was associated with the remarkable drop in yield observed when P was omitted from the nutrient medium; 3.2. the double dosis of nitrogen in the treatment N2 P1 K1, gave the highest yields; however the increase in yield did not produce any industrial gain: whereas the treatment N1 P1 K1 gave 32 per cent of starch, by raising the N level to N2, the starch content fell to 24 per cent; now, considering the total amount of starch present in the roots, one can see, that the increase in roots yield did not compensate for the marked decrease in the starch content; that is, the amount of starch obtained with N1 P1 K1 does not differ statistically from the quantity obtained with N2 P1 K1; as far we know facts similar to this had been observed in sugar beets and sugar cane, as a result of the interaction between nitrogen and sugar produced; the biochemical aspect of the problem is very interesting: by raising the amount of assimilable nitrogen, instead of the carbohydrates polymerize to starch, they do combine to the amino groups to give proteinaceous materials; actually, it did happen that the protein content increased from 2.91 to 5.14 per cent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Kikuio grass (Pennisetum clandestinum Hochst) is beyond any doubt, a pasture very important for farm animals; since its chemical composition is very similar to that of alfalfa, the present field trial was carried out; a randomized block design with 8 treatments was selected as follows: 1 N - P - K - Ca - Mg (complete manuring) 2 N - P - K - Ca----- (without Mg) 3 N - P - K-------Mg (without Ca) 4 ----P - K - Ca - Mg (without N) 5 N------K - Ca Mg (without P) 6 N - P - Ca - Mg (without K) 7 organic matter (without mineral fertilizers) 8 control Nitrogen was applied as NaN03 (topdressed) and as ammonium sulfate; P2O5 was given as superphosphate associated to bonemeal; K2O was applied as muriate, CaO as "sambaquis" (oyster shells); MgO was given as MgSO4 (topdressed). The source of organic matter was farmyard manure. As far yields are concerned the following observations were made: 1. treatment n. 7 was superior to all others; 2. considering the mineral fertilizers, good responses were due to N and P2O5; 3. the control yield was exceedingly poor, being inferior to all the others treatments; The chemical analyses revealed that: 1. the protein content decreased accordingly to this order: 7, 6, 5 and 1; treatment 4 (without N) gave the lowest protein content; 2. treatment n. 4 produced the highest fat content; treatment no. 7 ranked second; no. 8 gave the lowest fat content; 3. crude fiber: highest - treatment 7; lowest - 8; 4. ashes: the ashes content was higher in treatment 5; proprobably because the most abundant element in the ashes is K, the ash content of treatment 6 (no K) was very low; 5. non nitrogenous substances (determined by difference) - high in treatment 8 and low in treatment 7; 6. mineral elements in the ashes - the element omitted from a given treatment was very low in the grasses therein obtained; this shows the relative poverty of the soil in that element. As general remark the Authors suggest the use of farmyard manure in the fertilization of Kikuio grass; farmyard manure could probably substitute wither green manure or compost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The author studies, with the aid of Mitscherlich's law, two experiments of sugar cane fertilization with vinasse. The first one, carried out in Piracicaba, State of S. Paulo, by ARRUDA, gave the following yields. No vinasse 47.0 tons/ha. 76.0 tons/ha. 250 c.m./ha. of vinasse 75.0 do. 112.0 do. 500 do. 90.0 do. 112.0 do. 1000 do. 98.0 do. 107.0 do. Data without NPK were appropriate for the fitting of the law, the equation of which was found to be: y = 100.8 [1 - 10 -0.00132 (x + 206) ], where y is measured in metric tons/hectare, and x in cubic meters/hectare. The optimum amount of vinasse to be used is given by the formula x* = 117.2 + 1 log w u , ______ ____ 0.00132 250 t being u the response to the standard dressing of 250 cubic meters/hectare of vinasse, w the price per ton of sugar cane, and t the price per cubic meter for the transportation of vinasse. In Pernambuco, a 3(4) NPK vinasse experiment gave the following mean yields: No vinasse 41.0 tons/hectare 250 cm./ha. of vinasse 108.3 do. 500 do. 134.3 do. The equation obtained was now y = 150.7 [1 - 10 -000165 (x + 84)], being the most profitable level of vinasse x* = 115.2 + 1 log w u , _______ ____ 0.00165 250 t One should notice the close agreement of the coefficients c (0.00132 in S. Paulo and 0.00165 in Pernambuco). Given the prices of Cr$ 20.00 per cubic meter for the transportation of vinasse (in trucks) and Cr$ 250.00 per ton of sugar cane (uncut, in the fields) the most profitable dressings are: 236 c.m./ha. of vinasse in S. Paulo, and 434 c.m./ha. in Pernambuco.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper describes the data obtained for the growth of sugar cane, Variety Co 419, and the amount and rate of absorption of nitrogen, phosphorus, potassium, calcium, magnesium, sulfur, and silicon, according to the age of the plant, in the soil and climate conditions of the state of S. Paulo, Brazil. An experiment was installed in the Estação Experimental de Cana de Açúcar "Dr. José Vizioli", at Piracicaba, state of S. Paulo, Brazil, and the soil "tèrra-roxa misturada" presented the following composition: Sand (more than 0,2 mm)........................................................................ 8.40 % Fine sand (from 0,2 to less than 0,02 mm)................................................. 24.90 % Silt (from 0,02 to less than 0,002 mm)...................................................... 16.40 % Clay (form 0,002 mm and less)................................................................ 50.20 % pH 10 g of soil and 25 ml of distilled water)..................................................... 5.20 %C (g of carbon per 100 g of soil)................................................................. 1.00 %N (g of nitrogen per 100 g of soil)............................................................... 0.15 P0(4)-³ (me. per 100 g of soil, soluble in 0,05 normal H2SO4) ............................... 0.06 K+ (exchangeable, me. per 100 g of soil)....... 0.18 Ca+² (exchangeable, me. per 100 g of soil)...... 2.00 Mg+² (exchangeable, me. per 100 g of soil)...... 0.66 The monthly rainfall and mean temperature from January 1956 to August 1957 are presented in Table 1, in Portuguese. The experiment consisted of 3 replications of the treatments: without fertilizer and with fertilizer (40 Kg of N, from ammonium sulfate; 100 Kg of P(2)0(5) from superphosphate and 40 Kg K2 O, from potassium chloride). Four complete stools (stalks and leaves) were harvested from each treatment, and the plants separated in stalks and leaves, weighed, dried and analysed every month from 6 up to 15 months of age. The data obtained for fresh and dry matter production are presented in table 2, and in figure land 2, in Portuguese. The curves for fresh and dry matter production showed that fertilized and no fertilized sugar cane with 6 months of age presents only 5% of its total weight at 15 months of age. The most intense period of growth in this experiment is located, between 8 and 12 months of age, that is between December 1956 and April 1957. The dry matter production of sugar cane with 8 and 12 months of age was, respectively, 12,5% and 87,5% of the total weight at 15 months of age. The growth of sugar cane in relation to its age follows a sigmoid curve, according to the figures 1, 2 and 3. The increase of dry matter production promoted by using fertilizer was 62,5% when sugar cane was 15 months of age. The concentration of the elements (tables 4 and 5 in Portuguese) present a general trend of decreasing as the cane grows older. In the stalks this is true for all elements studied in this experiment. But in the leaves, somme elements, like sulfur and silicon, appears to increase with the increasing of age. Others, like calcium and magnesium do not show large variations, and finally a third group, formed by nitrogen, phosphorus and potassium seems to decrease at the beginning and later presents a light increasing. The concentration of the elements was higher in the leaves than in the stalks from 6 up to 15 months of age. There were some exceptions. Potassium, magnesium and sulfur were higher in the stalks than in the leaves from 6 up to 8 or 9 months of age. After 9 months, the leaves presented more potassium, magnesium and sulfur than the stalks. The percentage of nitrogen in the leaves was lower in the plants that received fertilizer than in the plants without fertilizer with 6, 7, 8, 10, 11 and 13 months of age. This can be explained by "dilution effect". The uptake of elements by 4 stools (stalks and leaves) of sugar cane according to the plant age is showed in table 6, in Portuguese. The absorption of all studied elements, nitrogen, phosphorus, potassium, calcium, magnesium, sulfur and silicon, was higher in plants that received fertilizer. The trend of uptake of nitrogen and potassium is similar to the trend of production of dry matter, that is, the maximum absorption of those two nutrients occurs between 9 and 13 months of age. Finaly, the maxima amounts of elements absorbed by 4 stools (stalks and leaves) of sugar cane plants that received fertilizer are condensed in the following table: Element Maximum absorption in grams Age of the plants in months Nitrogen (N) 81.0 14 Phosphorus (P) 6.8 15 Potassium (K) 81.5 15 Calcium (Ca) 19.2 15 Magnesium (Mg) 13.9 13 Sulfur (S) 9.3 15 Silicon (Si) 61.8 15 It is very interesting to note the low absorption of phosphorus even with 100 kg of P2O5 per hectare, aplied as superphosphate. The uptake of phosphorus was lower than calcium, magnesium and sulfur. Also, it is noteworthy the large amount of silicon absorbed by sugar cane.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors discuss a formula for the determination of the most profitable level of fertilization (x*). This formula, presented by CAREY and ROBINSON (1953), can be written as: x*= (1/c) log cx u L10 + (1/c) log wu _______ ___ 1-10 x u t being c the growth factor in Mitscherlich's equation, x u a standard dressing of the nutrient, L 10 the Naeperian logarithm of 10, u the response to the standard dressing, w the unit price of the crop product, and i the unit price of the nutrient. This formula is a modification of one of the formulas of PIMENTEL GOMES (1953). One of its advantages is that is does not depend on A, the theoretical maximum harvest, which is not directly given by experimental data. But another advantage, proved in this. paper, is that the first term on the right hand side K= 1(/c) log cx u L 10 ____________ 1 - 10-cx u is practically independent of c, and approximately equivalent to (1/2) x u. So, we have approximately x* = (1/2) x u + (1/c) log wu . ____ x u t With experimental data we compute z = wu ____ x u t then using tables 1, 2 and 3, we may obtain Y - (1/c) log z and finally x* = (1/2) x u + Y. This is an easy way to determine the most profitable level of fertilization when experimental data on the response u to a dressing x u are available. Tables for the calculation of Y are included, for nitrogen, phosphorus, potash, and manure.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors discuss from the economic point of view the use of a few functions intended to represent the yield y corresponding to a level xof the nutrient. They point out that under conditions of scarce capital what is actually most important is not to obtain the highest profit per hectare but the highest return per cruzeiro spent, so that we should maximize the function z = _R - C_ = _R_ - 1 , C C where R is the gross income and C the cost of production (fixed plus variable, both per hectare). Being C = M + rx, with r the unit price of the nutrient and Af the fixed cost of the crop, wo are led to the equation (M + rx)R' - rR = 0. With R = k + sx + tx², this gives a solution Xo = - Mt - √ M²t² - r t(Ms - Kr)- _____________________ rt on the other hand, with R = PyA [1 - 10-c(x + b)], x0 will be the root of equation (M + rx)cL 10 + r 10c(x + b) = 0 (12). Another solution, pointed out by PESEK and HEADY, is to maximize the function z = sx + tx² _________ m + rx where the numerator is the additional income due to the nutrient, and m is the fixed cost of fertilization. This leads to a solution x+ = - mt - √m²t² - mrst (13) _________________ rt However, we must have x+< _r_-_s_ I if we want to satisfy t _dy_ > r. dx This condition is satisfied only if we have m < _(s__-__r)² (14), - 4 t a restriction apparently not perceived by PESEK and HEADY. A similar reasoning using Mitscherlich's law leads to equation (mcL 10 + r) + cr(L 10)x - r 10cx = 0 (15), with a similar restriction. As an example, data of VIEGAS referring to fertilization of corn (maize) gave the equation y - 1534 + 22.99 x - 0. 1069 x², with x in kg/ha of the cereal. With the prices of Cr$ 5.00 per kilo of maize, Cr$ 26.00 per kilo of P2O3,. and M = Cr$ 5,000.00, we obtain x0 = 61 kg/ha of P(2)0(5). A similar reasoning using Mitscherlich's law leads to x0 = 53 kg/ha. Now, if we take in account only the fixed cost of fertilization m = Cr$ 600.00 per hectare, we obtain from (13) x+ = 51 kg/ha of P2O5, while (14) gives x+ - 41 kg/ha. Note that if m = Cr$ 5,000.00, we obtain by formula (13) x+ = 88 kg/ha of P2O5, a solution which is not valid, since condition (14) is not satisfied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cotton (variety I. A. C. 11) was grown on a sandy soil under two treatments, namely: (1) NPK + lime and (2) no fertilizers. Three weeks after planting a systematic sampling of entire plants was done every other week. In the laboratory determinations of dry weight were made and afterwards the various plant partes were submitted to chemical analyses, nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and sulfur (S) being determined. The aim of this work was to obtain information on the periods in which the absorption of the several macronutrients was more intense, this providing a clue for time of application of certain mineral fertilizers. Data obtained hereby allowed for the following main conclusions. The initial rate of growth of the cotton plant, judged by the determinations of dry weight, is rather slow. Seven weeks after planting and again five weeks two distinct periods of rapid growth take place. The uptake of macronutrients is rather small until the first flowers show up. From there on the absorption of minerals is intensified. From the time in which fruits are being formed to full maturity, the crop draws from the soil nearly 75 percent of the total amount of elements required to complet life cycle. This seams to point out the need for late dressings of fertilizers, particularly of those containing N and K. The following amounts of element in Kg/ha were absorbed by the fertilized plants: N - 83.2 P - 8.1 K - 65.5 Ca - 61.7 Mg - 12.8 and S - 33.2. The three major macronutrients, namely, N. P and K are exported as seed cotton in the following proportions with respect to the total amounts taken up by the entire crop: N - 1/3, P - 1/2 and K - 1/3.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pineapple plants when grown in the greenhouse by the sand culture technique in order to study the effects of deficiencies of macronutrients in growth, yield, leaf and fruit composition, the main results were the following. As a result of the several treatments, yield decreased in the order: Complete Minus Mg Minus S Minus Ca Minus K; nitrogen and phosphorus deficiente plants did not bear fruit. Leaf analyses (see Table 5-1) showed that the ommission of given element from the nutrient solution always caused a decrease in its level in the green tissue. As seen in Table 5-2 the lack of macronutrients had certain effects on fruit composition: acidity increased in all cases excet in the minus Mg fruits; ash usually decreased reaching its lowest valued in fruits from the minus K plants; when compared to fruits picked in the "normal" plants, those lacking K showed a marked decrease both in brix and in total sugars as well; sulfur deficiency also brought a net reduction in the sugar content. Table 5-1. Levels of macronutrients found in pinapple leaves. Elements Treatment Percent of dry matter Nitrogen (N) Complete 1.29 Minus N 0.78 Phosphorus (P) Complete 0.12 Minus P .05 Potassium (K) Complete 2.28 Minus K 0.16 Calcium (Ca) Complete 1.19 Minus Ca 1.10 Magnesium (Mg) Complete 0.41 Minus Mg .29 Sulfur (S) Complete 1.00 Minus S .65 Table 5-2. Effects of macronutrients deficiency in yield and fruit characteristics. Treatment Ave. weight of Acidity As per Brix Total sugars fruits (gm) per cent cent per cent Complete 1.031 1.16 0.40 14.7 10.8 Minus N no fruit was produced Minus P no fruit was produced Minus K 246 1.44 0.26 11.9 8.3 Minus Ca 513 1.40 0.35 17.8 14.3 Minus Mg 957 0.97 0.38 15.4 13.0 Minus S 576 1.42 0.46 17.1 6.5

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Due to the great economic importance of the cotton crop to Brazil, a systematic series of research work has been carried out in recent years dealing with its mineral nutrition an fertilization. A summary of recent finding is given in the following sections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sand culture experiments, using a sub-irrigation technique, were installed in order to find out the effects of the macronutrients N, P, K, Ca, Mg and S on growth, aspect, mineral composition, length of fibers, thickness of cell wall and cellulose concentration in slash pine. The aim was to obtain, under controlled conditions, basic information which could eventually lead to practical means designed to increase the rate of growth and to make of slash pine a richer source of cellulose. Nitrogen, Phosphorus, Potassium Experiment A 3 x 3 x 3 factorial design with two replicates was used. Nitrogen was supplied initially at the levels of 25, 50 and 100 ppm; phosphorus was given at the rates of 5, 10 and 20 ppm; potassium was supplied at the rates of 25, 50 and 100 ppm; six months after the experiment was started the first level for each element was dropped to zero. Others macro and all micronutrients were supplied at uniform rates. Fifteen hours of illumination per day were provided. The experimental technique for growing the slash pine seedlings proved quite satisfactory. Symptoms of deficiency of nitrogen, phosphorus and potassium were observed, described and recorded in photographs and water colors. These informations will help to identify abnormalities which may appear under field conditions. Chemical analysis of the several plant parts, on the other hand, give a valuable means to assess the nutritional status of slash pine, thus confirming when needed, the visual diagnosis. The correctness of manurial pratices, on the other hand, can be judged with the help of the analytical data tabulated. Under the experimental conditions nitrogen caused the highest increases on growth, as measured by increments in height and dry weights, whereas the effects of phosphorus and potassium were less marked. Cellulose concentration was not significantly affected by the treatments used. Higher levels of N seemed to decrease both length of fiber elements and the thickness of cell wall. The effects of P and K were not well defined. Calcium, Magnesium, Sulfur Experiment A 3 x 3 x 3 factorial design with two replicates was used. Calcium was supplied initially at the levels of 12.5, 25 and 50 ppm; magnesium and sulfur were given at the rates of 6, 12.5 and 25 ppm. Other macro and micronutrients were supplied at uniform rates, common to all treatments. Three months after starting the experiment the first level for each element was dropped to zero. Symptoms of deficiency of calcium, magnesium and sulfur were observed, described and recorded as in the case of the previous experiment. Chemical analysis were made, both for mineral content and cellulose concentration. Length of fibers and thickness of cell wall were measured. Both calcium and magnesium increase height, sulfur failing to give significant response. Dry weight was beneficially affected by calcium and sulfur. The levels of calcium, magnesium and sulfur in the needles associated with deficiency and maximum growth are comparable with those found in the literature. Cellulose concentration increased when the level of sulfur in the substrate was raised. The thickness of cell wall was negatively affected by the treatments; no effect was observed with regards to length of fibers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper deals initially with the role of mineral fertilizers in increasing agricultural production: the relationship between the two variables is illustrated within global, regional national and local contexts. The pattern and trends in fertilizer usage in Brazil are presented next, namely: increase in consumption in the period 1950/72; regional distribution; consumption as related to crops and cultivated land. It is shown that in less than a quarter or century fertilizer use has increased in the country nearly 12 fold, whereas world consumption was raised 7 fold, thus exceeding estimates based in several criteria. Steps taken to secure the raise in fertilizer consumption above the historical trend are discussed: research experience for outlining fertilization recomendations; the transfer of the knowledge to the farmer by the extension work both official and private; the credit policy and special incentives for the purchase of fertilizer; the national policy for minumum proces of agricultural products; the implantation of a national fertilizer industry. It is considered that the Brazilian experience adapted to similar local conditions in other developing countries, presents a possibility for achieving beneficial results without inflationary reflexes in the economy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(1) In the period 1965/77 fertilizer consumption in Brazil increased nearly fifteen foild from circa 200,000 tons of N + P2O5 + K2O to 3 million tons. During the fifteen years extending from 1950 to 1964 usage of the primary macronutrients was raised by a factor of 2 only. (2) Several explanations are given for the remarkable increase, namely: an experimental background which supplied data for recommendations of rates, time and type of application; a convenient governmental policy for minimum prices and rural credit; capacity of the industry to meet the demand of the fertilizer market; an adequate mechanism for the diffusion of the practice of fertilizer use to the farmer. (3) The extension work, which has caused a permanent change in the aptitude towards fertilization, was carried out in the traditional way by salesmen supported by a technical staff, as well as by agronomists of the official services. (4) Two new programs were started and conducted in a rather short time, both putting emphasis on the relatively new technology of fertilizer use. (5) The first program, conducted in the Southern part of the country, extended lab and green house work supplemented by a few field trials to small land owners - the so called "operação tatú" (operation armadillo). (6) The seconde program, covering a larger problem area in the Northeast and in Central Brazil, began directly in field as thousands of demonstrations and simple experiments with the participation of local people whose involvement was essential for the success of the initiative; in this case the official extension services, both foreign and national sources of funds, and universities did participate under the leadership of the Brazilian Association for the Diffusion of Fertilizers (ANDA). (7) It is felt that the Brazilian experience gained thereof could be useful to other countries under similar conditions.