128 resultados para soil-vegetation interaction
Resumo:
The present study is a compilation of the literature about vegetation of mangrove forest of the north coast of Brazil. It synthesizes the knowledge about this important ecosystem and lists the currently available literature. The study focuses on the coast of Pará and Maranhão states, which are covered by a continuous belt of mangroves. The mangrove flora comprises six mangrove tree species and several associated species. Mangrove tree height and stem diameter vary as a function of abiotic local stand parameters. Seasonal variation in rainfall and salinity affect the species' phenology and litter fall. Local population use products derived from mangrove plants for different purposes (e.g. fuel; medicinal; rural construction). The increase in the coastal population has given rise to conflicts, which impact on mangrove forest.
Resumo:
A palynological analysis of an organic paleosol found at 150-125 cm depth in a Mauritia swamp from the Eastern Orinoco Llanos is presented. The 25 cm pollen record summarizes the vegetation history during the Early Holocene, from 10,225 to 7,800 calendar yr BP. The vegetation was characterized by a Poaceae marsh, where Asteraceae, Melastomataceae, Schefflera-type and Phyllanthus were the most abundant shrubs and trees. Pollen-types richness was lower than that recorded today in similar environments, and Mauritia pollen was absent. Results suggest that climate was as humid as present during the beginning of the Holocene, with a decreasing trend in humidity from around 8,000-7,000 yr BP, in coincidence with the beginning of the "Early-Mid-Holocene Dryness" that affected deeply the Amazon Basin and neighboring areas. Dry climatic conditions could have existed in the study site until the Mid-Late Holocene when a Mauritia swamp developed, and humid conditions similar to present established. Main climate phases inferred in our study site fit well with regional trends recorded in other places located north Amazon Basin. However, conclusions are still limited by the lack of additional Quaternary records in the Orinoco Llanos area, avoiding regional correlations.
Resumo:
Soil respiration plays a significant role in the carbon cycle of Amazonian rainforests. Measurements of soil respiration have only been carried out in few places in the Amazon. This study investigated the effects of the method of ring insertion in the soil as well as of rainfall and spatial distribution on CO2 emission in the central Amazon region. The ring insertion effect increased the soil emission about 13-20% for sandy and loamy soils during the firsts 4-7 hours, respectively. After rainfall events below 2 mm, the soil respiration did not change, but for rainfall greater than 3 mm, after 2 hours there was a decrease in soil temperature and respiration of about 10-34% for the loamy and sand soils, with emissions returning to normal after around 15-18 hours. The size of the measurement areas and the spatial distribution of soil respiration were better estimated using the Shuttle Radar Topographic Mission (SRTM) data. The Campina reserve is a mosaic of bare soil, stunted heath forest-SHF and tall heath forest-THF. The estimated total average CO2 emissions from the area was 3.08±0.8 µmol CO2 m-2 s-1. The Cuieiras reserve is another mosaic of plateau, slope, Campinarana and riparian forests and the total average emission from the area was 3.82±0.76 µmol CO2 m-2 s-1. We also found that the main control factor of the soil respiration was soil temperature, with 90% explained by regression analysis. Automated soil respiration datasets are a good tool to improve the technique and increase the reliability of measurements to allow a better understanding of all possible factors driven by soil respiration processes.
Resumo:
In this study we present a new record of a plant-animal interaction: the mutualistic relationship between the specialist plant-ant Myrcidris epicharis Ward, 1990 (Pseudomyrmecinae) and its myrmecophyte host Myrcia madida McVaugh (Myrtaceae). We observed more than 50 individuals of M. madida occupied by M. epicharis in islands and margins of the Juruena River, in Cotriguaçu, Mato Grosso, Brazil (Meridional Amazon). We discuss a possible distribution of this symbiotic interaction throughout all the riparian forest of the Amazon River basin and its consequence to coevolution of the system.
Resumo:
Fields of murundus (FM) are wetlands that provide numerous ecosystem services. The objectives of this study were to evaluate the chemical [organic carbon (OC), P, K+, Ca2+, Mg2+, Al3+ and H+Al] and physical [texture and bulk density (Bd)] soil attributes and calculate the organic matter (OM) and nutrient stock (P, Ca, Mg, and K) in soils of FM located in the Guapore River basin in Mato Grosso. Thirty-six sampling points were selected, and soil samples were collected from two environments: the murundu and plain area surrounding (PAS). At each sampling point, mini trenches of 0.5 × 0.5 × 0.4 m were opened and disturbed and undisturbed soil samples were collected at depths of 0-0.1, 0.1-0.2, and 0.2-0.4 m. In the Principal Component Analysis the variables H+Al (49%) and OM (4%) were associated with the F1 component and sand content (47%) with the F2 component. The FM had lower pH values and higher concentrations of K+, P, and H+Al than PAS at all depths (p < 0.05). Additionally, FM stocked up to 433, 360, 205, and 11 kg ha-1 of Ca, Mg, K, and P, respectively, for up to a depth of 0.2 m. The murundu stored two times more K and three times more P than that in the PAS. Our results show that the FM has high sand content and Bd greater than 1.5 Mg m-3, high acidity, low OC content, and low nutrient concentrations. Thus, special care must be taken to preserve FM such that human intervention does not trigger environmental imbalances.
Resumo:
Species distribution modeling has relevant implications for the studies of biodiversity, decision making about conservation and knowledge about ecological requirements of the species. The aim of this study was to evaluate if the use of forest inventories can improve the estimation of occurrence probability, identify the limits of the potential distribution and habitat preference of a group of timber tree species. The environmental predictor variables were: elevation, slope, aspect, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). To estimate the distribution of species we used the maximum entropy method (Maxent). In comparison with a random distribution, using topographic variables and vegetation index as features, the Maxent method predicted with an average accuracy of 86% the geographical distribution of studied species. The altitude and NDVI were the most important variables. There were limitations to the interpolation of the models for non-sampled locations and that are outside of the elevation gradient associated with the occurrence data in approximately 7% of the basin area. Ceiba pentandra (samaúma), Castilla ulei (caucho) and Hura crepitans (assacu) is more likely to occur in nearby water course areas. Clarisia racemosa (guariúba), Amburana acreana (cerejeira), Aspidosperma macrocarpon (pereiro), Apuleia leiocarpa (cumaru cetim), Aspidosperma parvifolium (amarelão) and Astronium lecointei (aroeira) can also occur in upland forest and well drained soils. This modeling approach has potential for application on other tropical species still less studied, especially those that are under pressure from logging.
Resumo:
ABSTRACT Maize plants can establish beneficial associations with plant growth-promoting bacteria. However, few studies have been conducted on the characterization and inoculation of these bacteria in the Amazon region. This study aimed to characterize endophytic bacteria isolated from maize in the Amazon region and to assess their capacity to promote plant growth. Fifty-five bacterial isolates were obtained from maize grown in two types of ecosystems, i.e., a cerrado (savanna) and a forest area. The isolates were characterized by the presence of the nifH gene, their ability to synthesize indole-3-acetic acid (IAA) and solubilize calcium phosphate (CaHPO4), and 16S rRNA partial gene sequencing. Twenty-four bacteria contained the nifH gene, of which seven were isolated from maize plants cultivated in a cerrado area and seventeen from a forest area. Fourteen samples showed the capacity to synthesize IAA and only four solubilized calcium phosphate. The following genera were found among these isolates: Pseudomonas; Acinetobacter; Enterobacter; Pantoea; Burkholderia and Bacillus. In addition, eight isolates with plant growth-promoting capacity were selected for a glasshouse experiment involving the inoculation of two maize genotypes (a hybrid and a variety) grown in pots containing soil. Inoculation promoted the development of the maize plants but no significant interaction between maize cultivar and bacterial inoculation was found. A high diversity of endophytic bacteria is present in the Amazon region and these bacteria have potential to promote the development of maize plants.